Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands

Kuhn D, Fritzsch FSO, Zhang X, Wendisch VF, Blank LM, Bühler B, Schmid A (2013)
Journal of Biotechnology 163(2): 194-203.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kuhn, Daniel; Fritzsch, Frederik S.O.; Zhang, Xiumei; Wendisch, Volker F.UniBi ; Blank, Lars M.; Bühler, Bruno; Schmid, Andreas
Erscheinungsjahr
2013
Zeitschriftentitel
Journal of Biotechnology
Band
163
Ausgabe
2
Seite(n)
194-203
ISSN
0168-1656
Page URI
https://pub.uni-bielefeld.de/record/2521885

Zitieren

Kuhn D, Fritzsch FSO, Zhang X, et al. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology. 2013;163(2):194-203.
Kuhn, D., Fritzsch, F. S. O., Zhang, X., Wendisch, V. F., Blank, L. M., Bühler, B., & Schmid, A. (2013). Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology, 163(2), 194-203. doi:10.1016/j.jbiotec.2012.07.194
Kuhn, Daniel, Fritzsch, Frederik S.O., Zhang, Xiumei, Wendisch, Volker F., Blank, Lars M., Bühler, Bruno, and Schmid, Andreas. 2013. “Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands”. Journal of Biotechnology 163 (2): 194-203.
Kuhn, D., Fritzsch, F. S. O., Zhang, X., Wendisch, V. F., Blank, L. M., Bühler, B., and Schmid, A. (2013). Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology 163, 194-203.
Kuhn, D., et al., 2013. Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology, 163(2), p 194-203.
D. Kuhn, et al., “Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands”, Journal of Biotechnology, vol. 163, 2013, pp. 194-203.
Kuhn, D., Fritzsch, F.S.O., Zhang, X., Wendisch, V.F., Blank, L.M., Bühler, B., Schmid, A.: Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands. Journal of Biotechnology. 163, 194-203 (2013).
Kuhn, Daniel, Fritzsch, Frederik S.O., Zhang, Xiumei, Wendisch, Volker F., Blank, Lars M., Bühler, Bruno, and Schmid, Andreas. “Subtoxic product levels limit the epoxidation capacity of recombinant E. coli by increasing microbial energy demands”. Journal of Biotechnology 163.2 (2013): 194-203.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Maximization of cell viability rather than biocatalyst activity improves whole-cell ω-oxyfunctionalization performance.
Kadisch M, Julsing MK, Schrewe M, Jehmlich N, Scheer B, von Bergen M, Schmid A, Bühler B., Biotechnol Bioeng 114(4), 2017
PMID: 27883174
Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts.
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A., Biotechnol J 12(8), 2017
PMID: 28719144
Role of L-alanine for redox self-sufficient amination of alcohols.
Klatte S, Wendisch VF., Microb Cell Fact 14(), 2015
PMID: 25612558
The dynamic influence of cells on the formation of stable emulsions in organic-aqueous biotransformations.
Collins J, Grund M, Brandenbusch C, Sadowski G, Schmid A, Bühler B., J Ind Microbiol Biotechnol 42(7), 2015
PMID: 25916765
Reaction and catalyst engineering to exploit kinetically controlled whole-cell multistep biocatalysis for terminal FAME oxyfunctionalization.
Schrewe M, Julsing MK, Lange K, Czarnotta E, Schmid A, Bühler B., Biotechnol Bioeng 111(9), 2014
PMID: 24852702
Proline availability regulates proline-4-hydroxylase synthesis and substrate uptake in proline-hydroxylating recombinant Escherichia coli.
Falcioni F, Blank LM, Frick O, Karau A, Bühler B, Schmid A., Appl Environ Microbiol 79(9), 2013
PMID: 23455348
Whole-cell biocatalysis for selective and productive C-O functional group introduction and modification.
Schrewe M, Julsing MK, Bühler B, Schmid A., Chem Soc Rev 42(15), 2013
PMID: 23475180

58 References

Daten bereitgestellt von Europe PubMed Central.

Requirement of ArcA for redox regulation in Escherichia coli under microaerobic but not anaerobic or aerobic conditions.
Alexeeva S, Hellingwerf KJ, Teixeira de Mattos MJ., J. Bacteriol. 185(1), 2003
PMID: 12486057
Cell surface properties of organic solvent-tolerant mutants of Escherichia coli K-12
Aono, Applied and Environment Microbiology 63(), 1997
Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H., Mol. Syst. Biol. 2(), 2006
PMID: 16738554
The ArcBA two-component system of Escherichia coli is regulated by the redox state of both the ubiquinone and the menaquinone pool.
Bekker M, Alexeeva S, Laan W, Sawers G, Teixeira de Mattos J, Hellingwerf K., J. Bacteriol. 192(3), 2009
PMID: 19933363
Redox biocatalysis and metabolism: molecular mechanisms and metabolic network analysis
Blank, Antioxidants and Redox Signalling 13(), 2010
The complete genome sequence of Escherichia coli K-12.
Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y., Science 277(5331), 1997
PMID: 9278503
Energy and cofactor issues in fermentation and oxyfunctionalization processes
Bühler, 2010
NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain
Bühler, Applied and Environment Microbiology 74(), 2008
Process implementation aspects for biocatalytic hydrocarbon oxyfunctionalization.
Buhler B, Schmid A., J. Biotechnol. 113(1-3), 2004
PMID: 15380656
Metabolic flux responses to pyruvate kinase knockout in Escherichia coli.
Emmerling M, Dauner M, Ponti A, Fiaux J, Hochuli M, Szyperski T, Wuthrich K, Bailey JE, Sauer U., J. Bacteriol. 184(1), 2002
PMID: 11741855
Quinones as the redox signal for the arc two-component system of bacteria.
Georgellis D, Kwon O, Lin EC., Science 292(5525), 2001
PMID: 11423658
Solvent-tolerant bacteria for biotransformations in two-phase fermentation systems.
Heipieper HJ, Neumann G, Cornelissen S, Meinhardt F., Appl. Microbiol. Biotechnol. 74(5), 2007
PMID: 17262209
Multiple high-throughput analyses monitor the response of E. coli to perturbations.
Ishii N, Nakahigashi K, Baba T, Robert M, Soga T, Kanai A, Hirasawa T, Naba M, Hirai K, Hoque A, Ho PY, Kakazu Y, Sugawara K, Igarashi S, Harada S, Masuda T, Sugiyama N, Togashi T, Hasegawa M, Takai Y, Yugi K, Arakawa K, Iwata N, Toya Y, Nakayama Y, Nishioka T, Shimizu K, Mori H, Tomita M., Science 316(5824), 2007
PMID: 17379776
Proton translocation by transhydrogenase.
Jackson JB., FEBS Lett. 545(1), 2003
PMID: 12788487
Systems biology: a brief overview.
Kitano H., Science 295(5560), 2002
PMID: 11872829
The glycolytic flux in Escherichia coli is controlled by the demand for ATP.
Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR., J. Bacteriol. 184(14), 2002
PMID: 12081962
Systems biotechnology: rational whole-cell biocatalyst and bioprocess design
Kuhn, Engineering in Life Sciences 10(), 2010
Systematic optimization of a biocatalytic two-liquid phase oxyfunctionalization process guided by ecological and economic assessment
Kuhn, Green Chemistry 14(), 2012
Intensification and economic and ecological assessment of a biocatalytic oxyfunctionalization process
Kuhn, Green Chemistry 12(), 2010
Simple constrained-optimization view of acetate overflow in E. coli.
Majewski RA, Domach MM., Biotechnol. Bioeng. 35(7), 1990
PMID: 18592570
A multi-purpose cloning system based on the single stranded bacteriophage M13
Messing, Recombinant DNA Technical Bulletin 79–99(), 1979
Determination of metabolic flux ratios from 13C-experiments and gas chromatography–mass spectrometry data – protocol and principles
Nanchen, 2006
Nonlinear dependency of intracellular fluxes on growth rate in miniaturized continuous cultures of Escherichia coli
Nanchen, Applied and Environment Microbiology 72(), 2006
Effects of arcA and arcB genes knockout on the metabolism in Escherichia coli under aerobic condition
Nizam, Biochemical Engineering Journal 44(), 2009
Industrial systems biology.
Otero JM, Nielsen J., Biotechnol. Bioeng. 105(3), 2010
PMID: 19891008
Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
Otto K, Hofstetter K, Rothlisberger M, Witholt B, Schmid A., J. Bacteriol. 186(16), 2004
PMID: 15292130
Engineering of a stable whole-cell biocatalyst capable of (S)-styrene oxide formation for continuous two-liquid-phase applications
Panke, Applied and Environment Microbiology 65(), 1999
Pilot-scale production of (S)-styrene oxide from styrene by recombinant Escherichia coli synthesizing styrene monooxygenase.
Panke S, Held M, Wubbolts MG, Witholt B, Schmid A., Biotechnol. Bioeng. 80(1), 2002
PMID: 12209784
An alkane-responsive expression system for the production of fine chemicals
Panke, Applied and Environment Microbiology 65(), 1999
Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp strain VLB120
Panke, Applied and Environment Microbiology 64(), 1998
The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
Park JB, Buhler B, Habicher T, Hauer B, Panke S, Witholt B, Schmid A., Biotechnol. Bioeng. 95(3), 2006
PMID: 16767777
Productive asymmetric styrene epoxidation based on a next generation electroenzymatic methodology
Ruinatscha, Advanced Synthesis and Catalysis 351(), 2009

Sambrook, 2001
Metabolic networks in motion: 13C-based flux analysis.
Sauer U., Mol. Syst. Biol. 2(), 2006
PMID: 17102807
Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism.
Sauer U, Lasko DR, Fiaux J, Hochuli M, Glaser R, Szyperski T, Wuthrich K, Bailey JE., J. Bacteriol. 181(21), 1999
PMID: 10542169
Toward systematic metabolic engineering based on the analysis of metabolic regulation by the integration of different levels of information
Shimizu, Biochemical Engineering Journal 46(), 2009
Mechanisms of membrane toxicity of hydrocarbons.
Sikkema J, de Bont JA, Poolman B., Microbiol. Rev. 59(2), 1995
PMID: 7603409
Exploiting biological complexity for strain improvement through systems biology.
Stephanopoulos G, Alper H, Moxley J., Nat. Biotechnol. 22(10), 2004
PMID: 15470466
Practical issues in the application of oxygenases.
van Beilen JB, Duetz WA, Schmid A, Witholt B., Trends Biotechnol. 21(4), 2003
PMID: 12679065
Correcting mass isotopomer distributions for naturally occurring isotopes.
van Winden WA, Wittmann C, Heinzle E, Heijnen JJ., Biotechnol. Bioeng. 80(4), 2002
PMID: 12325156
Overflow metabolism in Escherichia coli during steady-state growth: transcriptional regulation and effect of the redox ratio
Vemuri, Applied and Environment Microbiology 72(), 2006
13C metabolic flux analysis.
Wiechert W., Metab. Eng. 3(3), 2001
PMID: 11461141
Fluxome analysis using GC-MS.
Wittmann C., Microb. Cell Fact. 6(), 2007
PMID: 17286851
Choice of biocatalyst form for scalable processes.
Woodley JM., Biochem. Soc. Trans. 34(Pt 2), 2006
PMID: 16545099
FiatFlux--a software for metabolic flux analysis from 13C-glucose experiments.
Zamboni N, Fischer E, Sauer U., BMC Bioinformatics 6(), 2005
PMID: 16122385
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22922011
PubMed | Europe PMC

Suchen in

Google Scholar