Selection, breeding and engineering of microalgae for bioenergy and biofuel production

Larkum AWD, Ross IL, Kruse O, Hankamer B (2012)
Trends in biotechnology 30(4): 198-205.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Larkum, Anthony W D; Ross, Ian L; Kruse, OlafUniBi ; Hankamer, Ben
Abstract / Bemerkung
Microalgal production technologies are seen as increasingly attractive for bioenergy production to improve fuel security and reduce CO(2) emissions. Photosynthetically derived fuels are a renewable, potentially carbon-neutral and scalable alternative reserve. Microalgae have particular promise because they can be produced on non-arable land and utilize saline and wastewater streams. Furthermore, emerging microalgal technologies can be used to produce a range of products such as biofuels, protein-rich animal feeds, chemical feedstocks (e.g. bioplastic precursors) and higher-value products. This review focuses on the selection, breeding and engineering of microalgae for improved biomass and biofuel conversion efficiencies.
Stichworte
Microalgae/chemistry; Industrial Microbiology/methods; Genetic Engineering/methods; Biomass; Biotechnology/methods; Microalgae/metabolism; Biofuels; Microalgae/genetics
Erscheinungsjahr
2012
Zeitschriftentitel
Trends in biotechnology
Band
30
Ausgabe
4
Seite(n)
198-205
ISSN
0167-7799
Page URI
https://pub.uni-bielefeld.de/record/2521178

Zitieren

Larkum AWD, Ross IL, Kruse O, Hankamer B. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in biotechnology. 2012;30(4):198-205.
Larkum, A. W. D., Ross, I. L., Kruse, O., & Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in biotechnology, 30(4), 198-205. doi:10.1016/j.tibtech.2011.11.003
Larkum, Anthony W D, Ross, Ian L, Kruse, Olaf, and Hankamer, Ben. 2012. “Selection, breeding and engineering of microalgae for bioenergy and biofuel production”. Trends in biotechnology 30 (4): 198-205.
Larkum, A. W. D., Ross, I. L., Kruse, O., and Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in biotechnology 30, 198-205.
Larkum, A.W.D., et al., 2012. Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in biotechnology, 30(4), p 198-205.
A.W.D. Larkum, et al., “Selection, breeding and engineering of microalgae for bioenergy and biofuel production”, Trends in biotechnology, vol. 30, 2012, pp. 198-205.
Larkum, A.W.D., Ross, I.L., Kruse, O., Hankamer, B.: Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in biotechnology. 30, 198-205 (2012).
Larkum, Anthony W D, Ross, Ian L, Kruse, Olaf, and Hankamer, Ben. “Selection, breeding and engineering of microalgae for bioenergy and biofuel production”. Trends in biotechnology 30.4 (2012): 198-205.

50 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Combining loss of function of FOLYLPOLYGLUTAMATE SYNTHETASE1 and CAFFEOYL-COA 3-O-METHYLTRANSFERASE1 for lignin reduction and improved saccharification efficiency in Arabidopsis thaliana.
Xie H, Engle NL, Venketachalam S, Yoo CG, Barros J, Lecoultre M, Howard N, Li G, Sun L, Srivastava AC, Pattathil S, Pu Y, Hahn MG, Ragauskas AJ, Nelson RS, Dixon RA, Tschaplinski TJ, Blancaflor EB, Tang Y., Biotechnol Biofuels 12(), 2019
PMID: 31073332
Microalgae: a robust "green bio-bridge" between energy and environment.
Chen Y, Xu C, Vaidyanathan S., Crit Rev Biotechnol 38(3), 2018
PMID: 28764567
Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4.
Ho SH, Nakanishi A, Kato Y, Yamasaki H, Chang JS, Misawa N, Hirose Y, Minagawa J, Hasunuma T, Kondo A., Sci Rep 7(), 2017
PMID: 28374798
High-throughput metabolic screening of microalgae genetic variation in response to nutrient limitation.
Bajhaiya AK, Dean AP, Driver T, Trivedi DK, Rattray NJW, Allwood JW, Goodacre R, Pittman JK., Metabolomics 12(), 2016
PMID: 26594136
Nutrient and media recycling in heterotrophic microalgae cultures.
Lowrey J, Armenta RE, Brooks MS., Appl Microbiol Biotechnol 100(3), 2016
PMID: 26572520
Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.
Xia A, Murphy JD., Trends Biotechnol 34(4), 2016
PMID: 26776247
Multiplex microfluidic system integrating sequential operations of microalgal lipid production.
Kwak HS, Kim JY, Na SC, Jeon NL, Sim SJ., Analyst 141(4), 2016
PMID: 26783562
Antimicrobial cocktails to control bacterial and fungal contamination in Chlamydomonas reinhardtii cultures.
Wang L, Yang F, Chen H, Fan Z, Zhou Y, Lu J, Zheng Y., Biotechniques 60(3), 2016
PMID: 26956093
Hyper-accumulation of starch and oil in a Chlamydomonas mutant affected in a plant-specific DYRK kinase.
Schulz-Raffelt M, Chochois V, Auroy P, Cuiné S, Billon E, Dauvillée D, Li-Beisson Y, Peltier G., Biotechnol Biofuels 9(), 2016
PMID: 26958078
Modulation of Medium-Chain Fatty Acid Synthesis in Synechococcus sp. PCC 7002 by Replacing FabH with a Chaetoceros Ketoacyl-ACP Synthase.
Gu H, Jinkerson RE, Davies FK, Sisson LA, Schneider PE, Posewitz MC., Front Plant Sci 7(), 2016
PMID: 27303412
Role of sufficient phosphorus in biodiesel production from diatom Phaeodactylum tricornutum.
Yu SJ, Shen XF, Ge HQ, Zheng H, Chu FF, Hu H, Zeng RJ., Appl Microbiol Biotechnol 100(15), 2016
PMID: 27260287
Efficiency and biotechnological aspects of biogas production from microalgal substrates.
Klassen V, Blifernez-Klassen O, Wobbe L, Schlüter A, Kruse O, Mussgnug JH., J Biotechnol 234(), 2016
PMID: 27449486
The selective breeding of the freshwater microalga Chlamydomonas reinhardtii for growth in salinity.
Takouridis SJ, Tribe DE, Gras SL, Martin GJO., Bioresour Technol 184(), 2015
PMID: 25466995
Hybrid life-cycle assessment of algal biofuel production.
Malik A, Lenzen M, Ralph PJ, Tamburic B., Bioresour Technol 184(), 2015
PMID: 25465782
Phosphite cannot be used as a phosphorus source but is non-toxic for microalgae.
Loera-Quezada MM, Leyva-González MA, López-Arredondo D, Herrera-Estrella L., Plant Sci 231(), 2015
PMID: 25575997
In vivo localization studies in the stramenopile alga Nannochloropsis oceanica.
Moog D, Stork S, Reislöhner S, Grosche C, Maier UG., Protist 166(1), 2015
PMID: 25687114
Analysis of green algal growth via dynamic model simulation and process optimization.
Zhang D, Chanona EA, Vassiliadis VS, Tamburic B., Biotechnol Bioeng 112(10), 2015
PMID: 25855209
Gas Transfer Controls Carbon Limitation During Biomass Production by Marine Microalgae.
Tamburic B, Evenhuis CR, Suggett DJ, Larkum AW, Raven JA, Ralph PJ., ChemSusChem 8(16), 2015
PMID: 26212226
In Metabolic Engineering of Eukaryotic Microalgae: Potential and Challenges Come with Great Diversity.
Gimpel JA, Henríquez V, Mayfield SP., Front Microbiol 6(), 2015
PMID: 26696985
Thermophilic lignocellulose deconstruction.
Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM., FEMS Microbiol Rev 38(3), 2014
PMID: 24118059
Biofilm cultivation of the oleaginous microalgae Pseudochlorococcum sp.
Ji B, Zhang W, Zhang N, Wang J, Lutzu GA, Liu T., Bioprocess Biosyst Eng 37(7), 2014
PMID: 24362561
Comparative transcriptome of wild type and selected strains of the microalgae Tisochrysis lutea provides insights into the genetic basis, lipid metabolism and the life cycle.
Carrier G, Garnier M, Le Cunff L, Bougaran G, Probert I, De Vargas C, Corre E, Cadoret JP, Saint-Jean B., PLoS One 9(1), 2014
PMID: 24489800
Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies.
Eibl JK, Corcoran JD, Senhorinho GN, Zhang K, Hosseini NS, Marsden J, Laamanen CA, Scott JA, Ross GM., AMB Express 4(1), 2014
PMID: 24670060
Growth and lipid accumulation properties of microalgal Phaeodactylum tricornutum under different gas liquid ratios.
Song M, Pei H, Hu W, Han F, Ji Y, Ma G, Han L., Bioresour Technol 165(), 2014
PMID: 24780103
Rationales and approaches for studying metabolism in eukaryotic microalgae.
Veyel D, Erban A, Fehrle I, Kopka J, Schroda M., Metabolites 4(2), 2014
PMID: 24957022
Plastid and mitochondrion genomic sequences from Arctic Chlorella sp. ArM0029B.
Jeong H, Lim JM, Park J, Sim YM, Choi HG, Lee J, Jeong WJ., BMC Genomics 15(), 2014
PMID: 24735464
Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation.
Möllers KB, Cannella D, Jørgensen H, Frigaard NU., Biotechnol Biofuels 7(), 2014
PMID: 24739806
Lipid-based biofuel production from wastewater.
Muller EE, Sheik AR, Wilmes P., Curr Opin Biotechnol 30(), 2014
PMID: 24768793
Parasites in algae mass culture.
Carney LT, Lane TW., Front Microbiol 5(), 2014
PMID: 24936200
Photosynthesis at the forefront of a sustainable life.
Janssen PJ, Lambreva MD, Plumeré N, Bartolucci C, Antonacci A, Buonasera K, Frese RN, Scognamiglio V, Rea G., Front Chem 2(), 2014
PMID: 24971306
Action spectra of oxygen production and chlorophyll a fluorescence in the green microalga Nannochloropsis oculata.
Tamburic B, Szabó M, Tran NT, Larkum AWD, Suggett DJ, Ralph PJ., Bioresour Technol 169(), 2014
PMID: 25063974
Label-free density difference amplification-based cell sorting.
Song J, Song M, Kang T, Kim D, Lee LP., Biomicrofluidics 8(6), 2014
PMID: 25553185
Flocculation as a low-cost method for harvesting microalgae for bulk biomass production.
Vandamme D, Foubert I, Muylaert K., Trends Biotechnol 31(4), 2013
PMID: 23336995
Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest.
Guo SL, Zhao XQ, Wan C, Huang ZY, Yang YL, Alam MA, Ho SH, Bai FW, Chang JS., Bioresour Technol 145(), 2013
PMID: 23419992
Engineering fatty acid biosynthesis in microalgae for sustainable biodiesel.
Blatti JL, Michaud J, Burkart MD., Curr Opin Chem Biol 17(3), 2013
PMID: 23683348
Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production.
Ortiz-Marquez JC, Do Nascimento M, Zehr JP, Curatti L., Trends Biotechnol 31(9), 2013
PMID: 23791304
Constraints to commercialization of algal fuels.
Chisti Y., J Biotechnol 167(3), 2013
PMID: 23886651
Effects of hydrothermal liquefaction on the fate of bioactive contaminants in manure and algal feedstocks.
Pham M, Schideman L, Sharma BK, Zhang Y, Chen WT., Bioresour Technol 149(), 2013
PMID: 24099971
Phenotypic spectrum of Parachlorella kessleri (Chlorophyta) mutants produced by heavy-ion irradiation.
Ota S, Matsuda T, Takeshita T, Yamazaki T, Kazama Y, Abe T, Kawano S., Bioresour Technol 149(), 2013
PMID: 24135567
Potential of proton-pumping rhodopsins: engineering photosystems into microorganisms.
Claassens NJ, Volpers M, dos Santos VA, van der Oost J, de Vos WM., Trends Biotechnol 31(11), 2013
PMID: 24120288
Optofluidic opportunities in global health, food, water and energy.
Chen YF, Jiang L, Mancuso M, Jain A, Oncescu V, Erickson D., Nanoscale 4(16), 2012
PMID: 22763418
Exploiting diversity and synthetic biology for the production of algal biofuels.
Georgianna DR, Mayfield SP., Nature 488(7411), 2012
PMID: 22895338

References

Daten bereitgestellt von Europe PubMed Central.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22178650
PubMed | Europe PMC

Suchen in

Google Scholar