QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch

Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2012)
Molecular Ecology 21(15): 3704-3717.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Knief, Ulrich; Schielzeth, HolgerUniBi ; Kempenaers, Bart; Ellegren, Hans; Forstmeier, Wolfgang
Abstract / Bemerkung
The intra- and interspecific diversity of avian beak morphologies is one of the most compelling examples for the power of natural selection acting on a morphological trait. The development and diversification of the beak have also become a textbook example for evolutionary developmental biology, and variation in expression levels of several genes is known to causally affect beak shape. However, until now, no genomic polymorphisms have been identified, which are related to beak morphology in birds. QTL mapping does reveal the location of causal polymorphisms, albeit with poor spatial resolution. Here, we estimate heritability and genetic correlations for beak length, depth and width and perform a QTL linkage analysis for these traits based on 1404 informative singlenucleotide polymorphisms genotyped in a four-generation pedigree of 992 captive zebra finches (Taeniopygia guttata). Beak size, relative to body size, was sexually dimorphic (larger in males). Heritability estimates ranged from 0.47 for beak length to 0.74 for beak width. QTL mapping revealed four to five regions of significant or suggestive genomewide linkage for each of the three beak dimensions (nine different regions in total). Eight out of 11 genes known to influence beak morphology are located in these nine peak regions. Five QTL do not cover known candidates demonstrating that yet unknown genes or regulatory elements may influence beak morphology in the zebra finch.
Erscheinungsjahr
2012
Zeitschriftentitel
Molecular Ecology
Band
21
Ausgabe
15
Seite(n)
3704-3717
ISSN
0962-1083
Page URI
https://pub.uni-bielefeld.de/record/2519833

Zitieren

Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W. QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology. 2012;21(15):3704-3717.
Knief, U., Schielzeth, H., Kempenaers, B., Ellegren, H., & Forstmeier, W. (2012). QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology, 21(15), 3704-3717. doi:10.1111/j.1365-294X.2012.05661.x
Knief, Ulrich, Schielzeth, Holger, Kempenaers, Bart, Ellegren, Hans, and Forstmeier, Wolfgang. 2012. “QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch”. Molecular Ecology 21 (15): 3704-3717.
Knief, U., Schielzeth, H., Kempenaers, B., Ellegren, H., and Forstmeier, W. (2012). QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology 21, 3704-3717.
Knief, U., et al., 2012. QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology, 21(15), p 3704-3717.
U. Knief, et al., “QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch”, Molecular Ecology, vol. 21, 2012, pp. 3704-3717.
Knief, U., Schielzeth, H., Kempenaers, B., Ellegren, H., Forstmeier, W.: QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch. Molecular Ecology. 21, 3704-3717 (2012).
Knief, Ulrich, Schielzeth, Holger, Kempenaers, Bart, Ellegren, Hans, and Forstmeier, Wolfgang. “QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch”. Molecular Ecology 21.15 (2012): 3704-3717.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations.
Knief U, Schielzeth H, Backström N, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W., Mol Ecol 26(5), 2017
PMID: 28100011
Insights into the genetic architecture of morphological traits in two passerine bird species.
Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A., Heredity (Edinb) 119(3), 2017
PMID: 28613280
Fitness consequences of polymorphic inversions in the zebra finch genome.
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W., Genome Biol 17(1), 2016
PMID: 27687629
Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.
Wright AE, Harrison PW, Zimmer F, Montgomery SH, Pointer MA, Mank JE., Mol Ecol 24(6), 2015
PMID: 25689782
Islands within an island: repeated adaptive divergence in a single population.
Langin KM, Sillett TS, Funk WC, Morrison SA, Desrosiers MA, Ghalambor CK., Evolution 69(3), 2015
PMID: 25645813
Shared developmental programme strongly constrains beak shape diversity in songbirds.
Fritz JA, Brancale J, Tokita M, Burns KJ, Hawkins MB, Abzhanov A, Brenner MP., Nat Commun 5(), 2014
PMID: 24739280
Neurogenetics of birdsong.
Scharff C, Adam I., Curr Opin Neurobiol 23(1), 2013
PMID: 23102970

69 References

Daten bereitgestellt von Europe PubMed Central.

Bmp4 and morphological variation of beaks in Darwin's finches.
Abzhanov A, Protas M, Grant BR, Grant PR, Tabin CJ., Science 305(5689), 2004
PMID: 15353802
The calmodulin pathway and evolution of elongated beak morphology in Darwin's finches.
Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ., Nature 442(7102), 2006
PMID: 16885984
The recombination landscape of the zebra finch Taeniopygia guttata genome.
Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H., Genome Res. 20(4), 2010
PMID: 20357052
The beak of the other finch: coevolution of genetic covariance structure and developmental modularity during adaptive evolution
Badyaev, Philosophical Transactions of the Royal Society B-Biological Sciences 365(), 2010

Beavis, 1998
Polymorphic cis- and trans-regulation of human gene expression
Cheung, Plos Biology 8(), 2010
Does beak colour affect female preference in zebra finches?
Collins, Animal Behaviour 52(), 1996

Darwin, 1859

Falconer, 1996
Highly parallel SNP genotyping.
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS., Cold Spring Harb. Symp. Quant. Biol. 68(), 2003
PMID: 15338605
Genetic architecture of quantitative traits in mice, flies, and humans.
Flint J, Mackay TF., Genome Res. 19(5), 2009
PMID: 19411597
Repeatability of mate choice in the zebra finch: consistency within and between females
Forstmeier, Animal Behaviour 68(), 2004
Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse.
Forstmeier W, Schielzeth H., Behav. Ecol. Sociobiol. (Print) 65(1), 2010
PMID: 21297852
Bill morphology reflects female independence from male parental help
Forstmeier, Proceedings of the Royal Society B-Biological Science 268(), 2001
Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata).
Forstmeier W, Segelbacher G, Mueller JC, Kempenaers B., Mol. Ecol. 16(19), 2007
PMID: 17894758
Behavioral and evolutionary significance of the abnormal growth of beaks of birds
Fox, Condor 54(), 1952

Gilmour, 2009
Large upward bias in estimation of locus-specific effects from genomewide scans.
Goring HH, Terwilliger JD, Blangero J., Am. J. Hum. Genet. 69(6), 2001
PMID: 11593451
Pattern and process in the bill morphology of the great tit Parus major
Gosler, Ibis 129(), 1987

Grant, 1999
Unpredictable evolution in a 30-year study of Darwin's finches.
Grant PR, Grant BR., Science 296(5568), 2002
PMID: 11976447

Groeneveld, 2008
Testing the phenotypic gambit: phenotypic, genetic and environmental correlations of colour.
Hadfield JD, Nutall A, Osorio D, Owens IP., J. Evol. Biol. 20(2), 2007
PMID: 17305821
A web application to perform linkage disequilibrium and linkage analyses on a computational grid.
Hernandez-Sanchez J, Grunchec JA, Knott S., Bioinformatics 25(11), 2009
PMID: 19318423
Adaptation and function of the bills of Darwin’s finches: divergence by feeding type and sex
Herrel, Emu 110(), 2010
A zone of frontonasal ectoderm regulates patterning and growth in the face.
Hu D, Marcucio RS, Helms JA., Development 130(9), 2003
PMID: 12642481
Heritability of morphological traits in Darwin's finches: misidentified paternity and maternal effects.
Keller LF, Grant PR, Grant BR, Petren K., Heredity (Edinb) 87(Pt 3), 2001
PMID: 11737279
Noggin and retinoic acid transform the identity of avian facial prominences.
Lee SH, Fu KK, Hui JN, Richman JM., Nature 414(6866), 2001
PMID: 11780063
Two developmental modules establish 3D beak-shape variation in Darwin’s finches
Mallarino, Proceedings of the National Academy of Sciences USA 108(), 2011
Seasonal variation in bill morphology of nuthatches Sitta europaea- dietary adaptations or consequences?
Matthysen, Ardea 77(), 1989
Effect size, confidence interval and statistical significance: a practical guide for biologists.
Nakagawa S, Cuthill IC., Biol Rev Camb Philos Soc 82(4), 2007
PMID: 17944619
Beaks, adaptation, and vocal evolution in Darwin’s finches
Podos, BioScience 54(), 2004
A simple and rapid method for calculating identity-by-descent matrices using multiple markers
Pong-Wong, Genetics Selection Evolution 33(), 2001
Life history traits and natural selection for small body size in a population of Darwin’s finches
Price, Evolution 38(), 1984

R, 2011
Bill dimorphism and foraging niche partitioning in the green woodhoopoe
Radford, Journal of Animal Ecology 72(), 2003
Sexual dimorphism and foraging behavior of emerald toucanets Aulacorhynchus prasinus in Costa Rica
Riley, Ornis Scandinavica 23(), 1992
Data from: QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait
Schielzeth, Dryad Digital Repository (), 2011
QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers.
Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H., Mol. Ecol. 21(2), 2011
PMID: 22111790
QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait.
Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W., Evolution 66(1), 2011
PMID: 22220861
Local retinoid signaling coordinates forebrain and facial morphogenesis by maintaining FGF8 and SHH.
Schneider RA, Hu D, Rubenstein JL, Maden M, Helms JA., Development 128(14), 2001
PMID: 11526081
Sexual dimorphism and differential niche utilization in birds
Selander, Condor 68(), 1966
Song sparrows grow and shrink with age
Smith, Auk 103(), 1986

SPSS, 2009

Svensson, 1992
Two types of cis-trans compensation in the evolution of transcriptional regulation
Takahasi, Proceedings of the National Academy of Sciences USA 108(), 2011
Quantitative genetics research in zebra finches: where we are and where to go
Tschirren, Emu 110(), 2010
High-resolution mapping of expression-QTLs yields insight into human gene regulation.
Veyrieras JB, Kudaravalli S, Kim SY, Dermitzakis ET, Gilad Y, Stephens M, Pritchard JK., PLoS Genet. 4(10), 2008
PMID: 18846210
The genome of a songbird.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK., Nature 464(7289), 2010
PMID: 20360741
Natural heritabilities: Can they be reliably estimated in the laboratory?
Weigensberg, Evolution 50(), 1996
The evolutionary significance of cis-regulatory mutations.
Wray GA., Nat. Rev. Genet. 8(3), 2007
PMID: 17304246
Molecular shaping of the beak.
Wu P, Jiang TX, Suksaweang S, Widelitz RB, Chuong CM., Science 305(5689), 2004
PMID: 15353803
Morphoregulation of avian beaks: comparative mapping of growth zone activities and morphological evolution.
Wu P, Jiang TX, Shen JY, Widelitz RB, Chuong CM., Dev. Dyn. 235(5), 2006
PMID: 16586442

Zann, 1996

Ziegler, 2006
Material in PUB:
Zitiert
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22694741
PubMed | Europe PMC

Suchen in

Google Scholar