Episodic Clustering of Data Streams Using a Topology-Learning Neural Network

Tscherepanow M, Kühnel S, Riechers S (2012)
In: Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL). Lemaire V, Lamirel J-C, Cuxac P (Eds); 24-29.

Konferenzbeitrag | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Herausgeber*in
Lemaire, Vincent; Lamirel, Jean-Charles; Cuxac, Pascal
Abstract / Bemerkung
In this paper, an extension of the unsupervised topology-learning TopoART neural network is presented. Like TopoART, it is capable of stable incremental on-line clustering of real-valued data. However, it incorporates temporal information in such a way that consecutive input vectors with a low distance in the input space are summarised to episode-like clusters. Inspired by natural memory systems, we propose two recall methods enabling the selection and retrieval of these episodes. They are demonstrated at the example of a video stream recorded in a natural environment.
Stichworte
Adaptive Resonance Theory; On-line learning; TopoART; Episodic memory; Incremental learning; Clustering; Neural networks
Erscheinungsjahr
2012
Titel des Konferenzbandes
Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL)
Seite(n)
24-29
Konferenz
European Conference on Artificial Intelligence (ECAI), Workshop on Active and Incremental Learning (AIL)
Konferenzort
Montpellier, France
Konferenzdatum
2012-08-27
Page URI
https://pub.uni-bielefeld.de/record/2519221

Zitieren

Tscherepanow M, Kühnel S, Riechers S. Episodic Clustering of Data Streams Using a Topology-Learning Neural Network. In: Lemaire V, Lamirel J-C, Cuxac P, eds. Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL). 2012: 24-29.
Tscherepanow, M., Kühnel, S., & Riechers, S. (2012). Episodic Clustering of Data Streams Using a Topology-Learning Neural Network. In V. Lemaire, J. - C. Lamirel, & P. Cuxac (Eds.), Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL) (pp. 24-29).
Tscherepanow, Marko, Kühnel, Sina, and Riechers, Sören. 2012. “Episodic Clustering of Data Streams Using a Topology-Learning Neural Network”. In Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL), ed. Vincent Lemaire, Jean-Charles Lamirel, and Pascal Cuxac, 24-29.
Tscherepanow, M., Kühnel, S., and Riechers, S. (2012). “Episodic Clustering of Data Streams Using a Topology-Learning Neural Network” in Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL), Lemaire, V., Lamirel, J. - C., and Cuxac, P. eds. 24-29.
Tscherepanow, M., Kühnel, S., & Riechers, S., 2012. Episodic Clustering of Data Streams Using a Topology-Learning Neural Network. In V. Lemaire, J. - C. Lamirel, & P. Cuxac, eds. Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL). pp. 24-29.
M. Tscherepanow, S. Kühnel, and S. Riechers, “Episodic Clustering of Data Streams Using a Topology-Learning Neural Network”, Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL), V. Lemaire, J.-C. Lamirel, and P. Cuxac, eds., 2012, pp.24-29.
Tscherepanow, M., Kühnel, S., Riechers, S.: Episodic Clustering of Data Streams Using a Topology-Learning Neural Network. In: Lemaire, V., Lamirel, J.-C., and Cuxac, P. (eds.) Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL). p. 24-29. (2012).
Tscherepanow, Marko, Kühnel, Sina, and Riechers, Sören. “Episodic Clustering of Data Streams Using a Topology-Learning Neural Network”. Proceedings of the ECAI Workshop on Active and Incremental Learning (AIL). Ed. Vincent Lemaire, Jean-Charles Lamirel, and Pascal Cuxac. 2012. 24-29.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:05Z
MD5 Prüfsumme
6d2e92667ce938de749e5e23eac9abb4


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar