The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains

Meisen I, Dzudzek T, Ehrhardt C, Ludwig S, Mormann M, Rosenbrueck R, Luemen R, Kniep B, Karch H, Müthing J (2012)
Glycobiology 22(8): 1055-1076.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Meisen, Iris; Dzudzek, Tabea; Ehrhardt, Christina; Ludwig, Stephan; Mormann, Michael; Rosenbrueck, Regina; Luemen, Regine; Kniep, Bernhard; Karch, Helge; Müthing, JohannesUniBi
Abstract / Bemerkung
Among influenza A viruses, subtype H3N2 is the major cause of human influenza morbidity and is associated with seasonal epidemics causing annually half million deaths worldwide. Influenza A virus infection is initiated via hemagglutinin that binds to terminally sialylated glycoconjugates exposed on the surface of target cells. Gangliosides from human granulocytes were probed using thin-layer chromatography overlay assays for their binding potential to H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. Highly polar gangliosides with poly-N-acetyllactosaminyl chains showing low chromatographic mobility exhibited strong virus adhesion which was entirely abolished by sialidase treatment. Auxiliary overlay assays using anti-sialyl Lewis(x) (sLe(x)) monoclonal antibodies showed identical binding patterns compared with those performed with the viruses. A comprehensive structural analysis of fractionated gangliosides by electrospray ionization quadrupole time-of-flight mass spectrometry revealed sLe(x) gangliosides with terminal Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc epitope and extended neolacto (nLc)-series core structures as the preferential virus binding gangliosides. More precisely, sLe(x) gangliosides with nLc8, nLc10 and nLc12Cer cores, carrying sphingosine (d18:1) and a fatty acid with variable chain length (mostly C24:0, C24:1 or C16:0) in the ceramide moiety and one or two additional internal fucose residues in the oligosaccharide portion, were identified as the preferred receptors recognized by H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. This study describes glycan-binding requirements of hemagglutinin beyond binding to glycans with a specific sialic acid linkage of as yet undefined neutrophil receptors acting as ligands for H3N2 viruses. In addition, our results pose new questions on the biological and clinical relevance of this unexpected specificity of a subtype of influenza A viruses.
ESI-Q-TOF; polyglycosylceramides; TLC overlay assay; sialyl Lewis(x)
Page URI


Meisen I, Dzudzek T, Ehrhardt C, et al. The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology. 2012;22(8):1055-1076.
Meisen, I., Dzudzek, T., Ehrhardt, C., Ludwig, S., Mormann, M., Rosenbrueck, R., Luemen, R., et al. (2012). The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology, 22(8), 1055-1076. doi:10.1093/glycob/cws077
Meisen, Iris, Dzudzek, Tabea, Ehrhardt, Christina, Ludwig, Stephan, Mormann, Michael, Rosenbrueck, Regina, Luemen, Regine, Kniep, Bernhard, Karch, Helge, and Müthing, Johannes. 2012. “The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains”. Glycobiology 22 (8): 1055-1076.
Meisen, I., Dzudzek, T., Ehrhardt, C., Ludwig, S., Mormann, M., Rosenbrueck, R., Luemen, R., Kniep, B., Karch, H., and Müthing, J. (2012). The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology 22, 1055-1076.
Meisen, I., et al., 2012. The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology, 22(8), p 1055-1076.
I. Meisen, et al., “The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains”, Glycobiology, vol. 22, 2012, pp. 1055-1076.
Meisen, I., Dzudzek, T., Ehrhardt, C., Ludwig, S., Mormann, M., Rosenbrueck, R., Luemen, R., Kniep, B., Karch, H., Müthing, J.: The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains. Glycobiology. 22, 1055-1076 (2012).
Meisen, Iris, Dzudzek, Tabea, Ehrhardt, Christina, Ludwig, Stephan, Mormann, Michael, Rosenbrueck, Regina, Luemen, Regine, Kniep, Bernhard, Karch, Helge, and Müthing, Johannes. “The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains”. Glycobiology 22.8 (2012): 1055-1076.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Glycosphingolipid-Protein Interaction in Signal Transduction.
Russo D, Parashuraman S, D'Angelo G., Int J Mol Sci 17(10), 2016
PMID: 27754465
Blood Groups in Infection and Host Susceptibility.
Cooling L., Clin Microbiol Rev 28(3), 2015
PMID: 26085552
Lipid interactions during virus entry and infection.
Mazzon M, Mercer J., Cell Microbiol 16(10), 2014
PMID: 25131438
Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells.
Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J., J Lipid Res 54(3), 2013
PMID: 23248329
Human H3N2 Influenza Viruses Isolated from 1968 To 2012 Show Varying Preference for Receptor Substructures with No Apparent Consequences for Disease or Spread.
Gulati S, Smith DF, Cummings RD, Couch RB, Griesemer SB, St George K, Webster RG, Air GM., PLoS One 8(6), 2013
PMID: 23805213

118 References

Daten bereitgestellt von Europe PubMed Central.

Entry of influenza virus into a glycosphingolipid-deficient mouse skin fibroblast cell line.
Ablan S, Rawat SS, Blumenthal R, Puri A., Arch. Virol. 146(11), 2001
PMID: 11765924
SabA is the H. pylori hemagglutinin and is polymorphic in binding to sialylated glycans.
Aspholm M, Olfat FO, Norden J, Sonden B, Lundberg C, Sjostrom R, Altraja S, Odenbreit S, Haas R, Wadstrom T, Engstrand L, Semino-Mora C, Liu H, Dubois A, Teneberg S, Arnqvist A, Boren T., PLoS Pathog. 2(10), 2006
PMID: 17121461
Structural basis for differential receptor binding of cholera and Escherichia coli heat-labile toxins: influence of heterologous amino acid substitutions in the cholera B-subunit.
Backstrom M, Shahabi V, Johansson S, Teneberg S, Kjellberg A, Miller-Podraza H, Holmgren J, Lebens M., Mol. Microbiol. 24(3), 1997
PMID: 9179843
Botulinum neurotoxin B-host receptor recognition: it takes two receptors to tango.
Baldwin MR, Kim JJ, Barbieri JT., Nat. Struct. Mol. Biol. 14(1), 2007
PMID: 17203068
CD15 cluster workshop report
Ball, 1995
Glycan analysis and influenza A virus infection of primary swine respiratory epithelial cells: the importance of NeuAc{alpha}2-6 glycans.
Bateman AC, Karamanska R, Busch MG, Dell A, Olsen CW, Haslam SM., J. Biol. Chem. 285(44), 2010
PMID: 20724471
Expression of a myeloid marker on TdT-positive acute lymphocytic leukemic cells: evidence by double-fluorescence staining.
Bettelheim P, Paietta E, Majdic O, Gadner H, Schwarzmeier J, Knapp W., Blood 60(6), 1982
PMID: 6182933
Printed covalent glycan array for ligand profiling of diverse glycan binding proteins.
Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong CH, Paulson JC., Proc. Natl. Acad. Sci. U.S.A. 101(49), 2004
PMID: 15563589
Multimeric glycotherapeutics: new paradigm.
Bovin NV, Tuzikov AB, Chinarev AA, Gambaryan AS., Glycoconj. J. 21(8-9), 2004
PMID: 15750788
Ganglioside embedded in reconstituted lipoprotein binds cholera toxin with elevated affinity.
Bricarello DA, Mills EJ, Petrlova J, Voss JC, Parikh AN., J. Lipid Res. 51(9), 2010
PMID: 20472870
N-glycolyl GM1 ganglioside as a receptor for simian virus 40.
Campanero-Rhodes MA, Smith A, Chai W, Sonnino S, Mauri L, Childs RA, Zhang Y, Ewers H, Helenius A, Imberty A, Feizi T., J. Virol. 81(23), 2007
PMID: 17855525
Reactogenicity and immunogenicity of parenteral monovalent influenza A/Victoria/3/75 (H3N2) virus vaccine in healthy adults.
Caplan ES, Hughes TP, O'Donnel S, Levine MM, Hornick RB., J. Infect. Dis. 136 Suppl(), 1977
PMID: 342622
Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin.
Chandrasekaran A, Srinivasan A, Raman R, Viswanathan K, Raguram S, Tumpey TM, Sasisekharan V, Sasisekharan R., Nat. Biotechnol. 26(1), 2008
PMID: 18176555
Gangliosides as high affinity receptors for tetanus neurotoxin.
Chen C, Fu Z, Kim JJ, Barbieri JT, Baldwin MR., J. Biol. Chem. 284(39), 2009
PMID: 19602728
IUPAC-IUB Joint Commission on Biochemical Nomenclature (JCBN). Nomenclature of glycolipids. Recommendations 1997
Chester, Glycoconj J 16(), 1999
Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray.
Childs RA, Palma AS, Wharton S, Matrosovich T, Liu Y, Chai W, Campanero-Rhodes MA, Zhang Y, Eickmann M, Kiso M, Hay A, Matrosovich M, Feizi T., Nat. Biotechnol. 27(9), 2009
PMID: 19741625
Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates.
Connor RJ, Kawaoka Y, Webster RG, Paulson JC., Virology 205(1), 1994
PMID: 7975212
Influenza A virus binding to human neutrophils and cross-linking requirements for activation.
Daigneault DE, Hartshorn KL, Liou LS, Abbruzzi GM, White MR, Oh SK, Tauber AI., Blood 80(12), 1992
PMID: 1334733
Glycosphingolipid binding specificities of rotavirus: identification of a sialic acid-binding epitope.
Delorme C, Brussow H, Sidoti J, Roche N, Karlsson KA, Neeser JR, Teneberg S., J. Virol. 75(5), 2001
PMID: 11160731
Matching IR-MALDI-o-TOF mass spectrometry with the TLC overlay binding assay and its clinical application for tracing tumor-associated glycosphingolipids in hepatocellular and pancreatic cancer.
Distler U, Hulsewig M, Souady J, Dreisewerd K, Haier J, Senninger N, Friedrich AW, Karch H, Hillenkamp F, Berkenkamp S, Peter-Katalinic J, Muthing J., Anal. Chem. 80(6), 2008
PMID: 18278947
Tumor-associated CD75s- and iso-CD75s-gangliosides are potential targets for adjuvant therapy in pancreatic cancer.
Distler U, Souady J, Hulsewig M, Drmic-Hofman I, Haier J, Denz A, Grutzmann R, Pilarsky C, Senninger N, Dreisewerd K, Berkenkamp S, Schmidt MA, Peter-Katalinic J, Muthing J., Mol. Cancer Ther. 7(8), 2008
PMID: 18723492
A systematic nomenclature for carbohydrate fragmentation in FAB-MS/MS spectra of glycoconjugates
Domon, Glycoconj J 5(), 1988
GM1 structure determines SV40-induced membrane invagination and infection.
Ewers H, Romer W, Smith AE, Bacia K, Dmitrieff S, Chai W, Mancini R, Kartenbeck J, Chambon V, Berland L, Oppenheim A, Schwarzmann G, Feizi T, Schwille P, Sens P, Helenius A, Johannes L., Nat. Cell Biol. 12(1), 2009
PMID: 20023649
Oligosaccharide microarrays for high-throughput detection and specificity assignments of carbohydrate-protein interactions.
Fukui S, Feizi T, Galustian C, Lawson AM, Chai W., Nat. Biotechnol. 20(10), 2002
PMID: 12219077
Characterization of sialosylated Lewisx as a new tumor-associated antigen.
Fukushima K, Hirota M, Terasaki PI, Wakisaka A, Togashi H, Chia D, Suyama N, Fukushi Y, Nudelman E, Hakomori S., Cancer Res. 44(11), 1984
PMID: 6386148
Receptor-binding properties of swine influenza viruses isolated and propagated in MDCK cells.
Gambaryan AS, Karasin AI, Tuzikov AB, Chinarev AA, Pazynina GV, Bovin NV, Matrosovich MN, Olsen CW, Klimov AI., Virus Res. 114(1-2), 2005
PMID: 15996787
Influenza neuraminidase: a druggable target for natural products.
Grienke U, Schmidtke M, von Grafenstein S, Kirchmair J, Liedl KR, Rollinger JM., Nat Prod Rep 29(1), 2011
PMID: 22025274
Influenza A virus up-regulates neutrophil adhesion molecules and adhesion to biological surfaces
Hartshorn, J Leukocyte Biol 65(), 1999
Sialidase-based anti-influenza virus therapy protects against secondary pneumococcal infection.
Hedlund M, Aschenbrenner LM, Jensen K, Larson JL, Fang F., J. Infect. Dis. 201(7), 2010
PMID: 20170378
Binding kinetics of influenza viruses to sialic acid-containing carbohydrates.
Hidari KI, Shimada S, Suzuki Y, Suzuki T., Glycoconj. J. 24(9), 2007
PMID: 17624609
Crystal structures exploring the origins of the broader specificity of escherichia coli heat-labile enterotoxin compared to cholera toxin.
Holmner A, Mackenzie A, Okvist M, Jansson L, Lebens M, Teneberg S, Krengel U., J. Mol. Biol. 406(3), 2010
PMID: 21168418
Oseltamivir, zanamivir and amantadine in the prevention of influenza: a systematic review.
Jackson RJ, Cooper KL, Tappenden P, Rees A, Simpson EL, Read RC, Nicholson KG., J. Infect. 62(1), 2010
PMID: 20950645
Monoclonal anti-glycosphingolipid antibodies.
Kannagi R., Meth. Enzymol. 312(), 2000
PMID: 11070870
Animal glycosphingolipids as membrane attachment sites for bacteria.
Karlsson KA., Annu. Rev. Biochem. 58(), 1989
PMID: 2673013
Monoclonal antibodies to human myelomonocyte differentiation antigens in the diagnosis of acute myeloid leukemia.
Knapp W, Majdic O, Stockinger H, Bettelheim P, Liszka K, Koller U, Peschel C., Med Oncol Tumor Pharmacother 1(4), 1984
PMID: 6599463
The CDw65 monoclonal antibodies VIM-8 and VIM-11 bind to the neutral glycolipid V3FucnLc8Cer.
Kniep B, Peter-Katalinic J, Muthing J, Majdic O, Pickl WF, Knapp W., J. Biochem. 119(3), 1996
PMID: 8830039
Receptor binding specificity of recent human H3N2 influenza viruses.
Kumari K, Gulati S, Smith DF, Gulati U, Cummings RD, Air GM., Virol. J. 4(), 2007
PMID: 17490484
Endocytosis of influenza viruses.
Lakadamyali M, Rust MJ, Zhuang X., Microbes Infect. 6(10), 2004
PMID: 15310470
Ganglioside GD1a is an essential coreceptor for Toll-like receptor 2 signaling in response to the B subunit of type IIb enterotoxin.
Liang S, Wang M, Tapping RI, Stepensky V, Nawar HF, Triantafilou M, Triantafilou K, Connell TD, Hajishengallis G., J. Biol. Chem. 282(10), 2007
PMID: 17227759
Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus.
Liu Y, Childs RA, Matrosovich T, Wharton S, Palma AS, Chai W, Daniels R, Gregory V, Uhlendorff J, Kiso M, Klenk HD, Hay A, Feizi T, Matrosovich M., J. Virol. 84(22), 2010
PMID: 20826688
Carbohydrate microarrays: key developments in glycobiology.
Liu Y, Palma AS, Feizi T., Biol. Chem. 390(7), 2009
PMID: 19426131
Gangliosides in cell recognition and membrane protein regulation.
Lopez PH, Schnaar RL., Curr. Opin. Struct. Biol. 19(5), 2009
PMID: 19608407
CD antigens 2002.
Mason D, Andre P, Bensussan A, Buckley C, Civin C, Clark E, de Haas M, Goyert S, Hadam M, Hart D, Horejsi V, Meuer S, Morrissey J, Schwartz-Albiez R, Shaw S, Simmons D, Uguccioni M, van der Schoot E, Vivier E, Zola H., Blood 99(10), 2002
PMID: 12014373
Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site.
Matrosovich MN, Gambaryan AS, Teneberg S, Piskarev VE, Yamnikova SS, Lvov DK, Robertson JS, Karlsson KA., Virology 233(1), 1997
PMID: 9201232
Human and avian influenza viruses target different cell types in cultures of human airway epithelium.
Matrosovich MN, Matrosovich TY, Gray T, Roberts NA, Klenk HD., Proc. Natl. Acad. Sci. U.S.A. 101(13), 2004
PMID: 15070767
Avian-virus-like receptor specificity of the hemagglutinin impedes influenza virus replication in cultures of human airway epithelium.
Matrosovich M, Matrosovich T, Uhlendorff J, Garten W, Klenk HD., Virology 361(2), 2007
PMID: 17207830
Influenza viruses display high-affinity binding to human polyglycosylceramides represented on a solid-phase assay surface.
Matrosovich M, Miller-Podraza H, Teneberg S, Robertson J, Karlsson KA., Virology 223(2), 1996
PMID: 8806582
Gangliosides are not essential for influenza virus infection.
Matrosovich M, Suzuki T, Hirabayashi Y, Garten W, Webster RG, Klenk HD., Glycoconj. J. 23(1-2), 2006
PMID: 16575528
Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals.
Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci MR, Donatelli I, Kawaoka Y., J. Virol. 74(18), 2000
PMID: 10954551
Fucosylated monosialogangliosides with polyglycosylceramide cores are preferential receptors of human H3N2 influenza A viruses Victoria/3/75 and Hiroshima/52/2005
Meisen, Glycoconj J 28(), 2011
A strain of human influenza A virus binds to extended but not short gangliosides as assayed by thin-layer chromatography overlay.
Miller-Podraza H, Johansson L, Johansson P, Larsson T, Matrosovich M, Karlsson KA., Glycobiology 10(10), 2000
PMID: 11030743
Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties.
Miller-Podraza H, Lanne B, Angstrom J, Teneberg S, Milh MA, Jovall PA, Karlsson H, Karlsson KA., J. Biol. Chem. 280(20), 2005
PMID: 15743770
Studies with a cold-recombinant A/Victoria/3/75 (H3N2) virus. II. Evaluation in adult volunteers.
Mortiz AJ, Kunz C, Hofman H, Liehl E, Reeve P, Maassab HF., J. Infect. Dis. 142(6), 1980
PMID: 7462697
High-resolution thin-layer chromatography of gangliosides.
Muthing J., J Chromatogr A 720(1-2), 1996
PMID: 8601198
TLC in structure and recognition studies of glycosphingolipids
Müthing, 1998
Preferential binding of the anticancer drug rViscumin (recombinant mistletoe lectin) to terminally alpha2-6-sialylated neolacto-series gangliosides.
Muthing J, Burg M, Mockel B, Langer M, Metelmann-Strupat W, Werner A, Neumann U, Peter-Katalinic J, Eck J., Glycobiology 12(8), 2002
PMID: 12145189
Glycosphingolipids of skeletal muscle: II. Modulation of Ca2(+)-flux in triad membranes by gangliosides.
Muthing J, Maurer U, Weber-Schurholz S., Carbohydr. Res. 307(1-2), 1998
PMID: 9658570
Mistletoe lectin I is a sialic acid-specific lectin with strict preference to gangliosides and glycoproteins with terminal Neu5Ac alpha 2-6Gal beta 1-4GlcNAc residues.
Muthing J, Meisen I, Bulau P, Langer M, Witthohn K, Lentzen H, Neumann U, Peter-Katalinic J., Biochemistry 43(11), 2004
PMID: 15023051
Tumor-associated CD75s gangliosides and CD75s-bearing glycoproteins with Neu5Acα2-6Galβ1-4GlcNAc residues are receptors for the anticancer drug rViscumin
Müthing, FASEB J 18(), 2005
Isolation and structural characterization of fucosylated gangliosides with linear poly-N-acetyllactosaminyl chains from human granulocytes.
Muthing J, Spanbroek R, Peter-Katalinic J, Hanisch FG, Hanski C, Hasegawa A, Unland F, Lehmann J, Tschesche H, Egge H., Glycobiology 6(2), 1996
PMID: 8727787
Role of O-linked carbohydrate chains on leukocyte cell membranes in platelet-induced leukocyte activation.
Nagata K, Tsuji T, Hanai N, Irimura T., J. Biol. Chem. 269(37), 1994
PMID: 7521876
Structure-function analysis of the human JC polyomavirus establishes the LSTc pentasaccharide as a functional receptor motif.
Neu U, Maginnis MS, Palma AS, Stroh LJ, Nelson CD, Feizi T, Atwood WJ, Stehle T., Cell Host Microbe 8(4), 2010
PMID: 20951965
Evolving complexities of influenza virus and its receptors.
Nicholls JM, Chan RW, Russell RJ, Air GM, Peiris JS., Trends Microbiol. 16(4), 2008
PMID: 18375125
E-selectin receptors on human leukocytes.
Nimrichter L, Burdick MM, Aoki K, Laroy W, Fierro MA, Hudson SA, Von Seggern CE, Cotter RJ, Bochner BS, Tiemeyer M, Konstantopoulos K, Schnaar RL., Blood 112(9), 2008
PMID: 18579791
Pandemic (avian) influenza.
Rajagopal S, Treanor J., Semin Respir Crit Care Med 28(2), 2007
PMID: 17458770
The genomic and epidemiological dynamics of human influenza A virus.
Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes EC., Nature 453(7195), 2008
PMID: 18418375
Helicobacter pylori and complex gangliosides.
Roche N, Angstrom J, Hurtig M, Larsson T, Boren T, Teneberg S., Infect. Immun. 72(3), 2004
PMID: 14977958
The global circulation of seasonal influenza A (H3N2) viruses.
Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, Gust ID, Hampson AW, Hay AJ, Hurt AC, de Jong JC, Kelso A, Klimov AI, Kageyama T, Komadina N, Lapedes AS, Lin YP, Mosterin A, Obuchi M, Odagiri T, Osterhaus AD, Rimmelzwaan GF, Shaw MW, Skepner E, Stohr K, Tashiro M, Fouchier RA, Smith DJ., Science 320(5874), 2008
PMID: 18420927
Sialic acids as regulators of molecular and cellular interactions.
Schauer R., Curr. Opin. Struct. Biol. 19(5), 2009
PMID: 19699080
Structural analysis of botulinum neurotoxin type G receptor binding .
Schmitt J, Karalewitz A, Benefield DA, Mushrush DJ, Pruitt RN, Spiller BW, Barbieri JT, Lacy DB., Biochemistry 49(25), 2010
PMID: 20507178
Sialic acids as receptor determinants for coronaviruses.
Schwegmann-Wessels C, Herrler G., Glycoconj. J. 23(1-2), 2006
PMID: 16575522
Adjustment of receptor-binding and neuraminidase substrate specificities in avian-human reassortant influenza viruses.
Shtyrya Y, Mochalova L, Voznova G, Rudneva I, Shilov A, Kaverin N, Bovin N., Glycoconj. J. 26(1), 2008
PMID: 18661232
In vivo influenza virus-inhibitory effects of the cyclopentane neuraminidase inhibitor RJW-270201.
Sidwell RW, Smee DF, Huffman JH, Barnard DL, Bailey KW, Morrey JD, Babu YS., Antimicrob. Agents Chemother. 45(3), 2001
PMID: 11181355
How viruses enter animal cells.
Smith AE, Helenius A., Science 304(5668), 2004
PMID: 15073366
Mapping the antigenic and genetic evolution of influenza virus.
Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, Osterhaus AD, Fouchier RA., Science 305(5682), 2004
PMID: 15218094
Differences in CD75s- and iso-CD75s-ganglioside content and altered mRNA expression of sialyltransferases ST6GAL1 and ST3GAL6 in human hepatocellular carcinomas and nontumoral liver tissues.
Souady J, Hulsewig M, Distler U, Haier J, Denz A, Pilarsky C, Senninger N, Dreisewerd K, Peter-Katalinic J, Muthing J., Glycobiology 21(5), 2010
PMID: 21147760
Glycan microarray technologies: tools to survey host specificity of influenza viruses.
Stevens J, Blixt O, Paulson JC, Wilson IA., Nat. Rev. Microbiol. 4(11), 2006
PMID: 17013397
Receptor specificity of influenza A H3N2 viruses isolated in mammalian cells and embryonated chicken eggs.
Stevens J, Chen LM, Carney PJ, Garten R, Foust A, Le J, Pokorny BA, Manojkumar R, Silverman J, Devis R, Rhea K, Xu X, Bucher DJ, Paulson JC, Paulson J, Cox NJ, Klimov A, Donis RO., J. Virol. 84(16), 2010
PMID: 20519409
Influenza virus infection of desialylated cells.
Stray SJ, Cummings RD, Air GM., Glycobiology 10(7), 2000
PMID: 10910970
Glycosphingolipids: structure, biological source, and properties.
Stults CL, Sweeley CC, Macher BA., Meth. Enzymol. 179(), 1989
PMID: 2695766
Human influenza A virus hemagglutinin distinguishes sialyloligosaccharides in membrane-associated gangliosides as its receptor which mediates the adsorption and fusion processes of virus infection—specificity for oligosaccharides and sialic acids and the sequence to which sialic acid is attached
Suzuki, J Biol Chem 261(), 1986
Virus infection and lipid rafts.
Suzuki T, Suzuki Y., Biol. Pharm. Bull. 29(8), 2006
PMID: 16880600
Characterization of human influenza virus variants selected in vitro in the presence of the neuraminidase inhibitor GS 4071.
Tai CY, Escarpe PA, Sidwell RW, Williams MA, Lew W, Wu H, Kim CU, Mendel DB., Antimicrob. Agents Chemother. 42(12), 1998
PMID: 9835519
Ganglioside-linked terminal sialic acid moieties on murine macrophages function as attachment receptors for murine noroviruses.
Taube S, Perry JW, Yetming K, Patel SP, Auble H, Shu L, Nawar HF, Lee CH, Connell TD, Shayman JA, Wobus CE., J. Virol. 83(9), 2009
PMID: 19244326
Systematic review of influenza resistance to the neuraminidase inhibitors.
Thorlund K, Awad T, Boivin G, Thabane L., BMC Infect. Dis. 11(), 2011
PMID: 21592407
Chemoenzymatic synthesis and application of glycopolymers containing multivalent sialyloligosaccharides with a poly(L-glutamic acid) backbone for inhibition of infection by influenza viruses.
Totani K, Kubota T, Kuroda T, Murata T, Hidari KI, Suzuki T, Suzuki Y, Kobayashi K, Ashida H, Yamamoto K, Usui T., Glycobiology 13(5), 2002
PMID: 12626382
Phenotypic and genotypic characterization of influenza virus mutants selected with the sialidase fusion protein DAS181.
Triana-Baltzer GB, Sanders RL, Hedlund M, Jensen KA, Aschenbrenner LM, Larson JL, Fang F., J. Antimicrob. Chemother. 66(1), 2010
PMID: 21097900
Glycosphingolipid carriers of carbohydrate antigens of human myeloid cells recognized by monoclonal antibodies.
Uemura K, Macher BA, DeGregorio M, Scudder P, Buehler J, Knapp W, Feizi T., Biochim. Biophys. Acta 846(1), 1985
PMID: 2410035
Sialic acids in human health and disease.
Varki A., Trends Mol Med 14(8), 2008
PMID: 18606570
Glycans as receptors for influenza pathogenesis.
Viswanathan K, Chandrasekaran A, Srinivasan A, Raman R, Sasisekharan V, Sasisekharan R., Glycoconj. J. 27(6), 2010
PMID: 20734133
Functional balance between haemagglutinin and neuraminidase in influenza virus infections.
Wagner R, Matrosovich M, Klenk HD., Rev. Med. Virol. 12(3), 2002
PMID: 11987141
Infection of the tracheal epithelium by infectious bronchitis virus is sialic acid dependent.
Winter C, Herrler G, Neumann U., Microbes Infect. 10(4), 2007
PMID: 18396435

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22534568
PubMed | Europe PMC

Suchen in

Google Scholar