A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii

Beel B, Prager K, Spexard M, Sasso S, Weiss D, Müller N, Heinnickel M, Dewez D, Ikoma D, Grossman AR, Kottke T, et al. (2012)
THE PLANT CELL 24(7): 2992-3008.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Beel, Benedikt; Prager, Katja; Spexard, MeikeUniBi; Sasso, Severin; Weiss, Daniel; Müller, Nico; Heinnickel, Mark; Dewez, David; Ikoma, Danielle; Grossman, Arthur R; Kottke, TilmanUniBi ; Mittag, Maria
Abstract / Bemerkung
Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue- and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.
Page URI


Beel B, Prager K, Spexard M, et al. A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL. 2012;24(7):2992-3008.
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., et al. (2012). A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL, 24(7), 2992-3008. doi:10.1105/tpc.112.098947
Beel, Benedikt, Prager, Katja, Spexard, Meike, Sasso, Severin, Weiss, Daniel, Müller, Nico, Heinnickel, Mark, et al. 2012. “A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii”. THE PLANT CELL 24 (7): 2992-3008.
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Dewez, D., Ikoma, D., Grossman, A. R., et al. (2012). A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL 24, 2992-3008.
Beel, B., et al., 2012. A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL, 24(7), p 2992-3008.
B. Beel, et al., “A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii”, THE PLANT CELL, vol. 24, 2012, pp. 2992-3008.
Beel, B., Prager, K., Spexard, M., Sasso, S., Weiss, D., Müller, N., Heinnickel, M., Dewez, D., Ikoma, D., Grossman, A.R., Kottke, T., Mittag, M.: A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii. THE PLANT CELL. 24, 2992-3008 (2012).
Beel, Benedikt, Prager, Katja, Spexard, Meike, Sasso, Severin, Weiss, Daniel, Müller, Nico, Heinnickel, Mark, Dewez, David, Ikoma, Danielle, Grossman, Arthur R, Kottke, Tilman, and Mittag, Maria. “A Flavin-Binding Cryptochrome Photoreceptor Responds to Both Blue and Red Light in Chlamydomonas reinhardtii”. THE PLANT CELL 24.7 (2012): 2992-3008.

51 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Structural changes within the bifunctional cryptochrome/photolyase CraCRY upon blue light excitation.
Franz-Badur S, Penner A, Straß S, von Horsten S, Linne U, Essen LO., Sci Rep 9(1), 2019
PMID: 31289290
The effect of light quality on the pro-/antioxidant balance, activity of photosystem II, and expression of light-dependent genes in Eutrema salsugineum callus cells.
Pashkovskiy PP, Soshinkova TN, Korolkova DV, Kartashov AV, Zlobin IE, Lyubimov VY, Kreslavski VD, Kuznetsov VV., Photosynth Res 136(2), 2018
PMID: 29071562
Highly Responsive Blue Light Sensor with Amorphous Indium-Zinc-Oxide Thin-Film Transistor based Architecture.
Liu PT, Ruan DB, Yeh XY, Chiu YC, Zheng GT, Sze SM., Sci Rep 8(1), 2018
PMID: 29802363
Structure of the bifunctional cryptochrome aCRY from Chlamydomonas reinhardtii.
Franz S, Ignatz E, Wenzel S, Zielosko H, Putu EPGN, Maestre-Reyna M, Tsai MD, Yamamoto J, Mittag M, Essen LO., Nucleic Acids Res 46(15), 2018
PMID: 30032195
Low-intensity electromagnetic fields induce human cryptochrome to modulate intracellular reactive oxygen species.
Sherrard RM, Morellini N, Jourdan N, El-Esawi M, Arthaut LD, Niessner C, Rouyer F, Klarsfeld A, Doulazmi M, Witczak J, d'Harlingue A, Mariani J, Mclure I, Martino CF, Ahmad M., PLoS Biol 16(10), 2018
PMID: 30278045
A Musashi Splice Variant and Its Interaction Partners Influence Temperature Acclimation in Chlamydomonas.
Li W, Flores DC, Füßel J, Euteneuer J, Dathe H, Zou Y, Weisheit W, Wagner V, Petersen J, Mittag M., Plant Physiol 178(4), 2018
PMID: 30301774
ROC75 is an Attenuator for the Circadian Clock that Controls LHCSR3 Expression.
Kamrani YY, Matsuo T, Mittag M, Minagawa J., Plant Cell Physiol 59(12), 2018
PMID: 30184184
The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.
Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG, Falciatore A, Lavaud J., New Phytol 214(1), 2017
PMID: 27870063
CSL encodes a leucine-rich-repeat protein implicated in red/violet light signaling to the circadian clock in Chlamydomonas.
Kinoshita A, Niwa Y, Onai K, Yamano T, Fukuzawa H, Ishiura M, Matsuo T., PLoS Genet 13(3), 2017
PMID: 28333924
A Plant Cryptochrome Controls Key Features of the Chlamydomonas Circadian Clock and Its Life Cycle.
Müller N, Wenzel S, Zou Y, Künzel S, Sasso S, Weiß D, Prager K, Grossman A, Kottke T, Mittag M., Plant Physiol 174(1), 2017
PMID: 28360233
Evolution of photoperiod sensing in plants and algae.
Serrano-Bueno G, Romero-Campero FJ, Lucas-Reina E, Romero JM, Valverde F., Curr Opin Plant Biol 37(), 2017
PMID: 28391047
An Animal-Like Cryptochrome Controls the Chlamydomonas Sexual Cycle.
Zou Y, Wenzel S, Müller N, Prager K, Jung EM, Kothe E, Kottke T, Mittag M., Plant Physiol 174(3), 2017
PMID: 28468769
Algal light sensing and photoacclimation in aquatic environments.
Duanmu D, Rockwell NC, Lagarias JC., Plant Cell Environ 40(11), 2017
PMID: 28245058
Targeting of Photoreceptor Genes in Chlamydomonas reinhardtii via Zinc-Finger Nucleases and CRISPR/Cas9.
Greiner A, Kelterborn S, Evers H, Kreimer G, Sizova I, Hegemann P., Plant Cell 29(10), 2017
PMID: 28978758
Bilin-Dependent Photoacclimation in Chlamydomonas reinhardtii.
Wittkopp TM, Schmollinger S, Saroussi S, Hu W, Zhang W, Fan Q, Gallaher SD, Leonard MT, Soubeyrand E, Basset GJ, Merchant SS, Grossman AR, Duanmu D, Lagarias JC., Plant Cell 29(11), 2017
PMID: 29084873
Antagonistic bacteria disrupt calcium homeostasis and immobilize algal cells.
Aiyar P, Schaeme D, García-Altares M, Carrasco Flores D, Dathe H, Hertweck C, Sasso S, Mittag M., Nat Commun 8(1), 2017
PMID: 29170415
Diversity of plant circadian clocks: Insights from studies of Chlamydomonas reinhardtii and Physcomitrella patens.
Ryo M, Matsuo T, Yamashino T, Ichinose M, Sugita M, Aoki S., Plant Signal Behav 11(1), 2016
PMID: 26645746
An Indexed, Mapped Mutant Library Enables Reverse Genetics Studies of Biological Processes in Chlamydomonas reinhardtii.
Li X, Zhang R, Patena W, Gang SS, Blum SR, Ivanova N, Yue R, Robertson JM, Lefebvre PA, Fitz-Gibbon ST, Grossman AR, Jonikas MC., Plant Cell 28(2), 2016
PMID: 26764374
The Trichoderma atroviride cryptochrome/photolyase genes regulate the expression of blr1-independent genes both in red and blue light.
García-Esquivel M, Esquivel-Naranjo EU, Hernández-Oñate MA, Ibarra-Laclette E, Herrera-Estrella A., Fungal Biol 120(4), 2016
PMID: 27020152
UV-B Perception and Acclimation in Chlamydomonas reinhardtii.
Tilbrook K, Dubois M, Crocco CD, Yin R, Chappuis R, Allorent G, Schmid-Siegert E, Goldschmidt-Clermont M, Ulm R., Plant Cell 28(4), 2016
PMID: 27020958
Starch phosphorylation: insights and perspectives.
Mahlow S, Orzechowski S, Fettke J., Cell Mol Life Sci 73(14), 2016
PMID: 27147464
Essential Role of an Unusually Long-lived Tyrosyl Radical in the Response to Red Light of the Animal-like Cryptochrome aCRY.
Oldemeyer S, Franz S, Wenzel S, Essen LO, Mittag M, Kottke T., J Biol Chem 291(27), 2016
PMID: 27189948
Beyond the Eye: Molecular Evolution of Extraocular Photoreception.
Porter ML., Integr Comp Biol 56(5), 2016
PMID: 27252216
Kinetic Modeling of the Arabidopsis Cryptochrome Photocycle: FADH(o) Accumulation Correlates with Biological Activity.
Procopio M, Link J, Engle D, Witczak J, Ritz T, Ahmad M., Front Plant Sci 7(), 2016
PMID: 27446119
Extended Electron-Transfer in Animal Cryptochromes Mediated by a Tetrad of Aromatic Amino Acids.
Nohr D, Franz S, Rodriguez R, Paulus B, Essen LO, Weber S, Schleicher E., Biophys J 111(2), 2016
PMID: 27463133
A blue-light photoreceptor mediates the feedback regulation of photosynthesis.
Petroutsos D, Tokutsu R, Maruyama S, Flori S, Greiner A, Magneschi L, Cusant L, Kottke T, Mittag M, Hegemann P, Finazzi G, Minagawa J., Nature 537(7621), 2016
PMID: 27626383
Dealing with light: the widespread and multitasking cryptochrome/photolyase family in photosynthetic organisms.
Fortunato AE, Annunziata R, Jaubert M, Bouly JP, Falciatore A., J Plant Physiol 172(), 2015
PMID: 25087009
Blue-light dependent reactive oxygen species formation by Arabidopsis cryptochrome may define a novel evolutionarily conserved signaling mechanism.
Consentino L, Lambert S, Martino C, Jourdan N, Bouchet PE, Witczak J, Castello P, El-Esawi M, Corbineau F, d'Harlingue A, Ahmad M., New Phytol 206(4), 2015
PMID: 25728686
Probing entrainment of Ostreococcus tauri circadian clock by green and blue light through a mathematical modeling approach.
Thommen Q, Pfeuty B, Schatt P, Bijoux A, Bouget FY, Lefranc M., Front Genet 6(), 2015
PMID: 25774167
The Chlamydomonas cell cycle.
Cross FR, Umen JG., Plant J 82(3), 2015
PMID: 25690512
Photoreceptor engineering.
Ziegler T, Möglich A., Front Mol Biosci 2(), 2015
PMID: 26137467
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
The Cryptochrome/Photolyase Family in aquatic organisms.
Oliveri P, Fortunato AE, Petrone L, Ishikawa-Fujiwara T, Kobayashi Y, Todo T, Antonova O, Arboleda E, Zantke J, Tessmar-Raible K, Falciatore A., Mar Genomics 14(), 2014
PMID: 24568948
A novel cryptochrome in the diatom Phaeodactylum tricornutum influences the regulation of light-harvesting protein levels.
Juhas M, von Zadow A, Spexard M, Schmidt M, Kottke T, Büchel C., FEBS J 281(9), 2014
PMID: 24628952
More light behind gene expression.
Kianianmomeni A., Trends Plant Sci 19(8), 2014
PMID: 24928178
Light emitting diodes (LEDs) applied to microalgal production.
Schulze PS, Barreira LA, Pereira HG, Perales JA, Varela JC., Trends Biotechnol 32(8), 2014
PMID: 25012573
News about cryptochrome photoreceptors in algae.
Beel B, Müller N, Kottke T, Mittag M., Plant Signal Behav 8(2), 2013
PMID: 23154511
Retrograde bilin signaling enables Chlamydomonas greening and phototrophic survival.
Duanmu D, Casero D, Dent RM, Gallaher S, Yang W, Rockwell NC, Martin SS, Pellegrini M, Niyogi KK, Merchant SS, Grossman AR, Lagarias JC., Proc Natl Acad Sci U S A 110(9), 2013
PMID: 23345435
Phase-resetting mechanism of the circadian clock in Chlamydomonas reinhardtii.
Niwa Y, Matsuo T, Onai K, Kato D, Tachikawa M, Ishiura M., Proc Natl Acad Sci U S A 110(33), 2013
PMID: 23898163
Magnetoreception: activated cryptochrome 1a concurs with magnetic orientation in birds.
Nießner C, Denzau S, Stapput K, Ahmad M, Peichl L, Wiltschko W, Wiltschko R., J R Soc Interface 10(88), 2013
PMID: 23966619
Evolutionary insights into photoregulation of the cell cycle in the green lineage.
Nishihama R, Kohchi T., Curr Opin Plant Biol 16(5), 2013
PMID: 23978389
Aureochrome 1a is involved in the photoacclimation of the diatom Phaeodactylum tricornutum.
Schellenberger Costa B, Sachse M, Jungandreas A, Bartulos CR, Gruber A, Jakob T, Kroth PG, Wilhelm C., PLoS One 8(9), 2013
PMID: 24073211

81 References

Daten bereitgestellt von Europe PubMed Central.

How the green alga Chlamydomonas reinhardtii keeps time.
Schulze T, Prager K, Dathe H, Kelm J, Kiessling P, Mittag M., Protoplasma 244(1-4), 2010
PMID: 20174954
Neurospora illuminates fungal photoreception.
Chen CH, Dunlap JC, Loros JJ., Fungal Genet. Biol. 47(11), 2010
PMID: 20637887
Searching for a photocycle of the cryptochrome photoreceptors.
Liu B, Liu H, Zhong D, Lin C., Curr. Opin. Plant Biol. 13(5), 2010
PMID: 20943427
Characterization of two members of the cryptochrome/photolyase family from Ostreococcus tauri provides insights into the origin and evolution of cryptochromes.
Heijde M, Zabulon G, Corellou F, Ishikawa T, Brazard J, Usman A, Sanchez F, Plaza P, Martin M, Falciatore A, Todo T, Bouget FY, Bowler C., Plant Cell Environ. 33(10), 2010
PMID: 20444223
Photoreaction of plant and DASH cryptochromes probed by infrared spectroscopy: the neutral radical state of flavoproteins.
Immeln D, Pokorny R, Herman E, Moldt J, Batschauer A, Kottke T., J Phys Chem B 114(51), 2010
PMID: 21128641
The cryptochromes: blue light photoreceptors in plants and animals.
Chaves I, Pokorny R, Byrdin M, Hoang N, Ritz T, Brettel K, Essen LO, van der Horst GT, Batschauer A, Ahmad M., Annu Rev Plant Biol 62(), 2011
PMID: 21526969
Green light induces shade avoidance symptoms.
Zhang T, Maruhnich SA, Folta KM., Plant Physiol. 157(3), 2011
PMID: 21852417
Arabidopsis cryptochrome 2 (CRY2) functions by the photoactivation mechanism distinct from the tryptophan (trp) triad-dependent photoreduction.
Li X, Wang Q, Yu X, Liu H, Yang H, Zhao C, Liu X, Tan C, Klejnot J, Zhong D, Lin C., Proc. Natl. Acad. Sci. U.S.A. 108(51), 2011
PMID: 22139370
CryB from Rhodobacter sphaeroides: a unique class of cryptochromes with new cofactors.
Geisselbrecht Y, Fruhwirth S, Schroeder C, Pierik AJ, Klug G, Essen LO., EMBO Rep. 13(3), 2012
PMID: 22290493
Human cryptochrome-1 confers light independent biological activity in transgenic Drosophila correlated with flavin radical stability.
Vieira J, Jones AR, Danon A, Sakuma M, Hoang N, Robles D, Tait S, Heyes DJ, Picot M, Yoshii T, Helfrich-Forster C, Soubigou G, Coppee JY, Klarsfeld A, Rouyer F, Scrutton NS, Ahmad M., PLoS ONE 7(3), 2012
PMID: 22427812
Light-absorption studies on neutral flavin radicals.
Muller F, Brustlein M, Hemmerich P, Massey V, Walker WH., Eur. J. Biochem. 25(3), 1972
PMID: 4339644
A rapid micromethod for determination of FMN and FAD in mixtures.
Faeder EJ, Siegel LM., Anal. Biochem. 53(1), 1973
PMID: 4145740
Functional interaction of phytochrome B and cryptochrome 2.
Mas P, Devlin PF, Panda S, Kay SA., Nature 408(6809), 2000
PMID: 11089975
Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways.
Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR., J. Biol. Chem. 282(35), 2007
PMID: 17565990
The Chlamydomonas genome reveals the evolution of key animal and plant functions.
Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Marechal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Fernandez E, Fukuzawa H, Gonzalez-Ballester D, Gonzalez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Riano-Pachon DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martinez D, Ngau WC, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR., Science 318(5848), 2007
PMID: 17932292
Chemical magnetoreception: bird cryptochrome 1a is excited by blue light and forms long-lived radical-pairs.
Liedvogel M, Maeda K, Henbest K, Schleicher E, Simon T, Timmel CR, Hore PJ, Mouritsen H., PLoS ONE 2(10), 2007
PMID: 17971869
Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation.
Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM., PLoS Biol. 6(1), 2008
PMID: 18184036
A systematic forward genetic analysis identified components of the Chlamydomonas circadian system.
Matsuo T, Okamoto K, Onai K, Niwa Y, Shimogawara K, Ishiura M., Genes Dev. 22(7), 2008
PMID: 18334618
Algal sensory photoreceptors.
Hegemann P., Annu Rev Plant Biol 59(), 2008
PMID: 18444900
Both subunits of the circadian RNA-binding protein CHLAMY1 can integrate temperature information.
Voytsekh O, Seitz SB, Iliev D, Mittag M., Plant Physiol. 147(4), 2008
PMID: 18567830
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
Somers DE, Devlin PF, Kay SA., Science 282(5393), 1998
PMID: 9822379
Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism.
Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR., Science 282(5394), 1998
PMID: 9831559
Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii.
Sineshchekov OA, Jung KH, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 99(13), 2002
PMID: 12060707
Overexpression of White Collar-1 (WC-1) activates circadian clock-associated genes, but is not sufficient to induce most light-regulated gene expression in Neurospora crassa.
Lewis ZA, Correa A, Schwerdtfeger C, Link KL, Xie X, Gomer RH, Thomas T, Ebbole DJ, Bell-Pedersen D., Mol. Microbiol. 45(4), 2002
PMID: 12180913
Rhythmic histone acetylation underlies transcription in the mammalian circadian clock.
Etchegaray JP, Lee C, Wade PA, Reppert SM., Nature 421(6919), 2002
PMID: 12483227
Phot-LOV1: photocycle of a blue-light receptor domain from the green alga Chlamydomonas reinhardtii.
Kottke T, Heberle J, Hehn D, Dick B, Hegemann P., Biophys. J. 84(2 Pt 1), 2003
PMID: 12547798
Molecular cloning and genomic organization of a gene for luciferin-binding protein from the dinoflagellate Gonyaulax polyedra.
Lee DH, Mittag M, Sczekan S, Morse D, Hastings JW., J. Biol. Chem. 268(12), 1993
PMID: 8473328
Association of flavin adenine dinucleotide with the Arabidopsis blue light receptor CRY1.
Lin C, Robertson DE, Ahmad M, Raibekas AA, Jorns MS, Dutton PL, Cashmore AR., Science 269(5226), 1995
PMID: 7638620
Binding and catalytic properties of Xenopus (6-4) photolyase.
Hitomi K, Kim ST, Iwai S, Harima N, Otoshi E, Ikenaga M, Todo T., J. Biol. Chem. 272(51), 1997
PMID: 9405474
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
The cryb mutation identifies cryptochrome as a circadian photoreceptor in Drosophila.
Stanewsky R, Kaneko M, Emery P, Beretta B, Wager-Smith K, Kay SA, Rosbash M, Hall JC., Cell 95(5), 1998
PMID: 9845370
Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu. Rev. Genet. 38(), 2004
PMID: 15568973
The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?
Mittag M, Kiaulehn S, Johnson CH., Plant Physiol. 137(2), 2005
PMID: 15710681
The phot LOV2 domain and its interaction with LOV1.
Guo H, Kottke T, Hegemann P, Dick B., Biophys. J. 89(1), 2005
PMID: 15879473
RNA silencing in Chlamydomonas: mechanisms and tools.
Schroda M., Curr. Genet. 49(2), 2005
PMID: 16308700
Blue-light-induced changes in Arabidopsis cryptochrome 1 probed by FTIR difference spectroscopy.
Kottke T, Batschauer A, Ahmad M, Heberle J., Biochemistry 45(8), 2006
PMID: 16489739
Crystallization and preliminary X-ray analysis of cryptochrome 3 from Arabidopsis thaliana.
Pokorny R, Klar T, Essen LO, Batschauer A., Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61(Pt 10), 2005
PMID: 16511200
PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism.
Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C., Proc. Natl. Acad. Sci. U.S.A. 103(26), 2006
PMID: 16777956
Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements.
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G., Plant Cell 18(8), 2006
PMID: 16798888
A heteromeric RNA-binding protein is involved in maintaining acrophase and period of the circadian clock.
Iliev D, Voytsekh O, Schmidt EM, Fiedler M, Nykytenko A, Mittag M., Plant Physiol. 142(2), 2006
PMID: 16920878
A cryptochrome/photolyase class of enzymes with single-stranded DNA-specific photolyase activity.
Selby CP, Sancar A., Proc. Natl. Acad. Sci. U.S.A. 103(47), 2006
PMID: 17062752
Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states.
Bouly JP, Schleicher E, Dionisio-Sese M, Vandenbussche F, Van Der Straeten D, Bakrim N, Meier S, Batschauer A, Galland P, Bittl R, Ahmad M., J. Biol. Chem. 282(13), 2007
PMID: 17237227
A novel photoreaction mechanism for the circadian blue light photoreceptor Drosophila cryptochrome.
Berndt A, Kottke T, Breitkreuz H, Dvorsky R, Hennig S, Alexander M, Wolf E., J. Biol. Chem. 282(17), 2007
PMID: 17298948
Phototropin blue-light receptors.
Christie JM., Annu Rev Plant Biol 58(), 2007
PMID: 17067285
The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone.
Banerjee R, Schleicher E, Meier S, Viana RM, Pokorny R, Ahmad M, Bittl R, Batschauer A., J. Biol. Chem. 282(20), 2007
PMID: 17355959
Involvement of electron transfer in the photoreaction of zebrafish Cryptochrome-DASH.
Zikihara K, Ishikawa T, Todo T, Tokutomi S., Photochem. Photobiol. 84(4), 2008
PMID: 18494763
The dynamics of photosynthesis.
Eberhard S, Finazzi G, Wollman FA., Annu. Rev. Genet. 42(), 2008
PMID: 18983262
Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S., Proc. Natl. Acad. Sci. U.S.A. 105(50), 2008
PMID: 19060203
Recognition and repair of UV lesions in loop structures of duplex DNA by DASH-type cryptochrome.
Pokorny R, Klar T, Hennecke U, Carell T, Batschauer A, Essen LO., Proc. Natl. Acad. Sci. U.S.A. 105(52), 2008
PMID: 19074258
Chlamydomonas CONSTANS and the evolution of plant photoperiodic signaling.
Serrano G, Herrera-Palau R, Romero JM, Serrano A, Coupland G, Valverde F., Curr. Biol. 19(5), 2009
PMID: 19230666
Spectroscopic characterization of a (6-4) photolyase from the green alga Ostreococcus tauri.
Usman A, Brazard J, Martin MM, Plaza P, Heijde M, Zabulon G, Bowler C., J. Photochem. Photobiol. B, Biol. 96(1), 2009
PMID: 19427226
Diatom PtCPF1 is a new cryptochrome/photolyase family member with DNA repair and transcription regulation activity.
Coesel S, Mangogna M, Ishikawa T, Heijde M, Rogato A, Finazzi G, Todo T, Bowler C, Falciatore A., EMBO Rep. 10(6), 2009
PMID: 19424294
The circadian system in higher plants.
Harmer SL., Annu Rev Plant Biol 60(), 2009
PMID: 19575587
Comparative photochemistry of animal type 1 and type 4 cryptochromes.
Ozturk N, Selby CP, Song SH, Ye R, Tan C, Kao YT, Zhong D, Sancar A., Biochemistry 48(36), 2009
PMID: 19663499
Microsecond light-induced proton transfer to flavin in the blue light sensor plant cryptochrome.
Langenbacher T, Immeln D, Dick B, Kottke T., J. Am. Chem. Soc. 131(40), 2009
PMID: 19754110
Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
Yang YJ, Zuo ZC, Zhao XY, Li X, Klejnot J, Li Y, Chen P, Liang SP, Yu XH, Liu XM, Lin CT., Mol Plant 1(1), 2007
PMID: 20031923
A cryptochrome-like protein is involved in the regulation of photosynthesis genes in Rhodobacter sphaeroides.
Hendrischk AK, Fruhwirth SW, Moldt J, Pokorny R, Metz S, Kaiser G, Jager A, Batschauer A, Klug G., Mol. Microbiol. 74(4), 2009
PMID: 19878455
Multiple roles and interaction factors of an E-box element in Chlamydomonas reinhardtii.
Seitz SB, Weisheit W, Mittag M., Plant Physiol. 152(4), 2010
PMID: 20154097
Identification and regulation of plasma membrane sulfate transporters in Chlamydomonas.
Pootakham W, Gonzalez-Ballester D, Grossman AR., Plant Physiol. 153(4), 2010
PMID: 20498339

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22773746
PubMed | Europe PMC

Suchen in

Google Scholar