Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field

Keary N, Bischof H-J (2012)
PLoS ONE 7(6): e38697.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
Many animals are able to perceive the earth magnetic field and to use it for orientation and navigation within the environment. The mechanisms underlying the perception and processing of magnetic field information within the brain have been thoroughly studied, especially in birds, but are still obscure. Three hypotheses are currently discussed, dealing with ferromagnetic particles in the beak of birds, with the same sort of particles within the lagena organs, or describing magnetically influenced radical-pair processes within retinal photopigments. Each hypothesis is related to a well-known sensory organ and claims parallel processing of magnetic field information with somatosensory, vestibular and visual input, respectively. Changes in activation within nuclei of the respective sensory systems have been shown previously. Most of these previous experiments employed intensity enhanced magnetic stimuli or lesions. We here exposed unrestrained zebra finches to either a stationary or a rotating magnetic field of the local intensity and inclination. C-Fos was used as an activity marker to examine whether the two treatments led to differences in fourteen brain areas including nuclei of the somatosensory, vestibular and visual system. An ANOVA revealed an overall effect of treatment, indicating that the magnetic field change was perceived by the birds. While the differences were too small to be significant in most areas, a significant enhancement of activation by the rotating stimulus was found in a hippocampal subdivision. Part of the hyperpallium showed a strong, nearly significant, increase. Our results are compatible with previous studies demonstrating an involvement of at least three different sensory systems in earth magnetic field perception and suggest that these systems, probably less elaborated, may also be found in nonmigrating birds.
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI


Keary N, Bischof H-J. Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field. PLoS ONE. 2012;7(6): e38697.
Keary, N., & Bischof, H. - J. (2012). Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field. PLoS ONE, 7(6), e38697. doi:10.1371/journal.pone.0038697
Keary, N., and Bischof, H. - J. (2012). Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field. PLoS ONE 7:e38697.
Keary, N., & Bischof, H.-J., 2012. Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field. PLoS ONE, 7(6): e38697.
N. Keary and H.-J. Bischof, “Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field”, PLoS ONE, vol. 7, 2012, : e38697.
Keary, N., Bischof, H.-J.: Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field. PLoS ONE. 7, : e38697 (2012).
Keary, Nina, and Bischof, Hans-Joachim. “Activation Changes in Zebra Finch (Taeniopygia guttata) Brain Areas Evoked by Alterations of the Earth Magnetic Field”. PLoS ONE 7.6 (2012): e38697.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The avian hippocampus and the hypothetical maps used by navigating migratory birds (with some reflection on compasses and migratory restlessness).
Bingman VP, MacDougall-Shackleton SA., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(6-7), 2017
PMID: 28299428
Hippocampal neurogenesis and volume in migrating and wintering semipalmated sandpipers (Calidris pusilla).
de Morais Magalhães NG, Guerreiro Diniz C, Guerreiro Diniz D, Pereira Henrique E, Corrêa Pereira PD, Matos Moraes IA, Damasceno de Melo MA, Sherry DF, Wanderley Picanço Diniz C., PLoS One 12(6), 2017
PMID: 28591201
Multiple Visual Field Representations in the Visual Wulst of a Laterally Eyed Bird, the Zebra Finch (Taeniopygia guttata).
Bischof HJ, Eckmeier D, Keary N, Löwel S, Mayer U, Michael N., PLoS One 11(5), 2016
PMID: 27139912
Sensing magnetic directions in birds: radical pair processes involving cryptochrome.
Wiltschko R, Wiltschko W., Biosensors (Basel) 4(3), 2014
PMID: 25587420
Extracellular recordings reveal absence of magneto sensitive units in the avian optic tectum.
Ramírez E, Marín G, Mpodozis J, Letelier JC., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 200(12), 2014
PMID: 25281335
Magnetoreception and baroreception in birds.
O'Neill P., Dev Growth Differ 55(1), 2013
PMID: 23253017
Embryological staging of the Zebra Finch, Taeniopygia guttata.
Murray JR, Varian-Ramos CW, Welch ZS, Saha MS., J Morphol 274(10), 2013
PMID: 23813920

64 References

Daten bereitgestellt von Europe PubMed Central.

Orientierung zugunruhiger Rotkehlchen im statischen Magnetfeld.
Wiltschko W, Merkel FW., 1966
Evidence for celestial and magnetic compass orientation in lake migrating Sockeye Salmon fry.
Quinn TP., 1980
The orientation behaviour of three toad species (genus Bufo) displaced from the breeding site.
Sinsch U., 1990
Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae).
Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W., Experientia 46(5), 1990
PMID: 2347407
Magnetic orientation in animals.
Wiltschko R, Wiltschko W., 1995
Superparamagnetic magnetite in the upper beak tissue of homing pigeons.
Hanzlik M, Heunemann C, Holtkamp-Rotzler E, Winklhofer M, Petersen N, Fleissner G., Biometals 13(4), 2000
PMID: 11247039
Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons.
Fleissner G, Holtkamp-Rotzler E, Hanzlik M, Winklhofer M, Fleissner G, Petersen N, Wiltschko W., J. Comp. Neurol. 458(4), 2003
PMID: 12619070
Magnetic orientation in birds
Wiltschko W, Wiltschko R., J. Exp. Biol. 199(Pt 1), 1996
PMID: 9317275
The osmotic magnetometer: a new model for magnetite-based magnetoreceptors in animals.
Shcherbakov VP, Winklhofer M., 1999
Retinal cryptochrome in a migratory passerine bird: a possible transducer for the avian magnetic compass.
Moller A, Sagasser S, Wiltschko W, Schierwater B., Naturwissenschaften 91(12), 2004
PMID: 15551029
Avian ultraviolet/violet cones identified as probable magnetoreceptors.
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS ONE 6(5), 2011
PMID: 21647441
Model for a physiological magnetic compass.
Schulten K, Windemuth A., 1986
A model for photoreceptor-based magnetoreception in birds.
Ritz T, Adem S, Schulten K., Biophys. J. 78(2), 2000
PMID: 10653784
Disorientation of inexperienced young pigeons after transportation in total darkness.
Wiltschko W, Wiltschko R., 1981
Red-light disrupts magnetic orientation of migratory birds.
Wiltschko W, Munro U, Ford H, Wiltschko R., 1993
Pigeon homing: Effect of various wavelengths of light during displacement.
Wiltschko R, Wiltschko W., 1998
The magnetic compass of domestic chickens, Gallus gallus.
Wiltschko W, Freire R, Munro U, Ritz T, Rogers L, Thalau P, Wiltschko R., J. Exp. Biol. 210(Pt 13), 2007
PMID: 17575035
Magnetic compass orientation of migratory birds in the presence of a 1.315 MHz oscillating field.
Thalau P, Ritz T, Stapput K, Wiltschko R, Wiltschko W., Naturwissenschaften 92(2), 2004
PMID: 15614508
Oscillating magnetic field disrupts magnetic orientation in Zebra finches, Taeniopygia guttata.
Keary N, Ruploh T, Voss J, Thalau P, Wiltschko R, Wiltschko W, Bischof HJ., Front. Zool. 6(), 2009
PMID: 19852792
Resonance effects indicate a radical-pair mechanism for avian magnetic compass.
Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W., Nature 429(6988), 2004
PMID: 15141211
Cryptochromes–a potential magnetoreceptor: what do we know and what do we want to know?
Liedvogel M, Mouritsen H., 2010
Avian ultraviolet/violet cones identified as probable magnetoreceptors.
Niessner C, Denzau S, Gross JC, Peichl L, Bischof HJ, Fleissner G, Wiltschko W, Wiltschko R., PLoS ONE 6(5), 2011
PMID: 21647441
Magnetic materials in otoliths of bird and fish lagena and their function.
Harada Y, Taniguchi M, Namatame H, Iida A., Acta Otolaryngol. 121(5), 2001
PMID: 11583391
Neurophysiological properties of magnetic cells in the pigeon's visual system.
Semm P, Demaine C., J. Comp. Physiol. A 159(5), 1986
PMID: 3806432
Responses to small magnetic variations by the trigeminal system of the bobolink.
Semm P, Beason RC., Brain Res. Bull. 25(5), 1990
PMID: 2289162
Night-vision brain area in migratory songbirds.
Mouritsen H, Feenders G, Liedvogel M, Wada K, Jarvis ED., Proc. Natl. Acad. Sci. U.S.A. 102(23), 2005
PMID: 15928090
A visual pathway links brain structures active during magnetic compass orientation in migratory birds.
Heyers D, Manns M, Luksch H, Gunturkun O, Mouritsen H., PLoS ONE 2(9), 2007
PMID: 17895978
Visual but not trigeminal mediation of magnetic compass information in a migratory bird.
Zapka M, Heyers D, Hein CM, Engels S, Schneider NL, Hans J, Weiler S, Dreyer D, Kishkinev D, Wild JM, Mouritsen H., Nature 461(7268), 2009
PMID: 19865170
Night-time neuronal activation of Cluster N in a day- and night-migrating songbird.
Zapka M, Heyers D, Liedvogel M, Jarvis ED, Mouritsen H., Eur. J. Neurosci. 32(4), 2010
PMID: 20618826
Magnetic field changes activate the trigeminal brainstem complex in a migratory bird.
Heyers D, Zapka M, Hoffmeister M, Wild JM, Mouritsen H., Proc. Natl. Acad. Sci. U.S.A. 107(20), 2010
PMID: 20439705
Lateralized activation of Cluster N in the brains of migratory songbirds.
Liedvogel M, Feenders G, Wada K, Troje NF, Jarvis ED, Mouritsen H., Eur. J. Neurosci. 25(4), 2007
PMID: 17331212
The use of the geomagnetic field for short distance orientation in zebra finches.
Voss J, Keary N, Bischof HJ., Neuroreport 18(10), 2007
PMID: 17558295
A stereotaxic headholder for small birds.
Bischof HJ., Brain Res. Bull. 7(4), 1981
PMID: 7028213
A stereotaxic atlas of the brain of the zebra finch, Taeniopygia guttata, with special emphasis on telencephalic visual and song system nuclei in transverse and sagittal sections.
Nixdorf-Bergweiler BE, Bischof HJ., 2007
Brain activation pattern depends on the strategy chosen by zebra finches to solve an orientation task. J Exp Biol.
Mayer U, Bischof HJ., 2012
Molecular mapping of movement-associated areas in the avian brain: a motor theory for vocal learning origin.
Feenders G, Liedvogel M, Rivas M, Zapka M, Horita H, Hara E, Wada K, Mouritsen H, Jarvis ED., PLoS ONE 3(3), 2008
PMID: 18335043
The homing pigeon hippocampus and space: in search of adaptive specialization.
Bingman VP, Hough GE 2nd, Kahn MC, Siegel JJ., Brain Behav. Evol. 62(2), 2003
PMID: 12937350
Spatial memory and adaptive specialization of the hippocampus.
Sherry DF, Jacobs LF, Gaulin SJ., Trends Neurosci. 15(8), 1992
PMID: 1384199
Differences between ipsilaterally and contralaterally evoked potentials in the visual wulst of the zebra finch.
Bredenkötter M, Bischof HJ., 1990
The role of the magnetite-based receptors in the beak in pigeon homing.
Wiltschko R, Schiffner I, Fuhrmann P, Wiltschko W., Curr. Biol. 20(17), 2010
PMID: 20691593
Avian magnetoreception: elaborate iron mineral containing dendrites in the upper beak seem to be a common feature of birds.
Falkenberg G, Fleissner G, Schuchardt K, Kuehbacher M, Thalau P, Mouritsen H, Heyers D, Wellenreuther G, Fleissner G., PLoS ONE 5(2), 2010
PMID: 20169083
Comparative perspectives of hippocampal organisation and function.
Watanabe S, Bingman VP, Bischof HJ., 2006
Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system.
Watanabe S, Mayer U, Bischof HJ., Behav. Brain Res. 222(1), 2011
PMID: 21435357
Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex.
Gray CM, Singer W., Proc. Natl. Acad. Sci. U.S.A. 86(5), 1989
PMID: 2922407
Visual feature integration and the temporal correlation hypothesis.
Singer W, Gray CM., Annu. Rev. Neurosci. 18(), 1995
PMID: 7605074
Temporal binding and the neural correlates of sensory awareness.
Engel AK, Singer W., Trends Cogn. Sci. (Regul. Ed.) 5(1), 2001
PMID: 11164732
Modulation of neuronal interactions through neuronal synchronization.
Womelsdorf T, Schoffelen JM, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P., Science 316(5831), 2007
PMID: 17569862
Avian ultraviolet/violet cones as magnetoreceptors: The problem of separating visual and magnetic information.
Bischof HJ, Nießner C, Peichl L, Wiltschko R, Wiltschko W., Commun Integr Biol 4(6), 2011
PMID: 22446535
Diversification of Neoaves: integration of molecular sequence data and fossils.
Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Kallersjo M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G., Biol. Lett. 2(4), 2006
PMID: 17148284
Material in PUB:
Teil dieser Dissertation


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 22679515
PubMed | Europe PMC

Suchen in

Google Scholar