Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis

Luesken FA, Wu ML, den Camp HJMO, Keltjens JT, Stunnenberg H, Francoijs K-J, Strous M, Jetten MSM (2012)
Environmental Microbiology 14(4): 1024-1034.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Luesken, Francisca A.; Wu, Ming L.; den Camp, Huub J. M. Op; Keltjens, Jan T.; Stunnenberg, Henk; Francoijs, Kees-Jan; Strous, MarcUniBi; Jetten, Mike S. M.
Abstract / Bemerkung
'Candidatus Methylomirabilis oxyfera' is a denitrifying methanotroph that performs nitrite-dependent anaerobic methane oxidation through a newly discovered intra-aerobic pathway. In this study, we investigated the response of a M. oxyfera enrichment culture to oxygen. Addition of either 2% or 8% oxygen resulted in an instant decrease of methane and nitrite conversion rates. Oxygen exposure also led to a deviation in the nitrite to methane oxidation stoichiometry. Oxygen-uptake and inhibition studies with cell-free extracts displayed a change from cytochrome c to quinol as electron donor after exposure to oxygen. The change in global gene expression was monitored by deep sequencing of cDNA using Illumina technology. After 24 h of oxygen exposure, transcription levels of 1109 (out of 2303) genes changed significantly when compared with the anoxic period. Most of the genes encoding enzymes of the methane oxidation pathway were constitutively expressed. Genes from the denitrification pathway, with exception of one of the putative nitric oxide reductases, norZ2, were severely downregulated. The majority of known genes involved in the vital cellular functions, such as nucleic acid and protein biosynthesis and cell division processes, were downregulated. The alkyl hydroperoxide reductase, ahpC, and genes involved in the synthesis/repair of the iron-sulfur clusters were among the few upregulated genes. Further, transcription of the pmoCAB genes of aerobic methanotrophs present in the non-M. oxyfera community were triggered by the presence of oxygen. Our results show that oxygen-exposed cells of M. oxyfera were under oxidative stress and that in spite of its oxygenic capacity, exposure to microoxic conditions has an overall detrimental effect.
Environmental Microbiology
Page URI


Luesken FA, Wu ML, den Camp HJMO, et al. Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology. 2012;14(4):1024-1034.
Luesken, F. A., Wu, M. L., den Camp, H. J. M. O., Keltjens, J. T., Stunnenberg, H., Francoijs, K. - J., Strous, M., et al. (2012). Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology, 14(4), 1024-1034. doi:10.1111/j.1462-2920.2011.02682.x
Luesken, F. A., Wu, M. L., den Camp, H. J. M. O., Keltjens, J. T., Stunnenberg, H., Francoijs, K. - J., Strous, M., and Jetten, M. S. M. (2012). Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology 14, 1024-1034.
Luesken, F.A., et al., 2012. Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology, 14(4), p 1024-1034.
F.A. Luesken, et al., “Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis”, Environmental Microbiology, vol. 14, 2012, pp. 1024-1034.
Luesken, F.A., Wu, M.L., den Camp, H.J.M.O., Keltjens, J.T., Stunnenberg, H., Francoijs, K.-J., Strous, M., Jetten, M.S.M.: Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis. Environmental Microbiology. 14, 1024-1034 (2012).
Luesken, Francisca A., Wu, Ming L., den Camp, Huub J. M. Op, Keltjens, Jan T., Stunnenberg, Henk, Francoijs, Kees-Jan, Strous, Marc, and Jetten, Mike S. M. “Effect of oxygen on the anaerobic methanotroph 'Candidatus Methylomirabilis oxyfera': kinetic and transcriptional analysis”. Environmental Microbiology 14.4 (2012): 1024-1034.

42 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The pH dependency of N-converting enzymatic processes, pathways and microbes: effect on net N2 O production.
Blum JM, Su Q, Ma Y, Valverde-Pérez B, Domingo-Félez C, Jensen MM, Smets BF., Environ Microbiol 20(5), 2018
PMID: 29411510
Methane stimulates massive nitrogen loss from freshwater reservoirs in India.
Naqvi SWA, Lam P, Narvenkar G, Sarkar A, Naik H, Pratihary A, Shenoy DM, Gauns M, Kurian S, Damare S, Duret M, Lavik G, Kuypers MMM., Nat Commun 9(1), 2018
PMID: 29593290
The hunt for the most-wanted chemolithoautotrophic spookmicrobes.
In 't Zandt MH, de Jong AE, Slomp CP, Jetten MS., FEMS Microbiol Ecol 94(6), 2018
PMID: 29873717
Effect of low concentrations of dissolved oxygen on the activity of denitrifying methanotrophic bacteria.
Kampman C, Piai L, Temmink H, Hendrickx TLG, Zeeman G, Buisman CJN., Water Sci Technol 77(11-12), 2018
PMID: 29944124
Bloom of a denitrifying methanotroph, 'Candidatus Methylomirabilis limnetica', in a deep stratified lake.
Graf JS, Mayr MJ, Marchant HK, Tienken D, Hach PF, Brand A, Schubert CJ, Kuypers MMM, Milucka J., Environ Microbiol 20(7), 2018
PMID: 29806730
Response of the Anaerobic Methanotroph "Candidatus Methanoperedens nitroreducens" to Oxygen Stress.
Guerrero-Cruz S, Cremers G, van Alen TA, Op den Camp HJM, Jetten MSM, Rasigraf O, Vaksmaa A., Appl Environ Microbiol 84(24), 2018
PMID: 30291120
Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems.
Zhu B, Bradford L, Huang S, Szalay A, Leix C, Weissbach M, Táncsics A, Drewes JE, Lueders T., Appl Environ Microbiol 83(4), 2017
PMID: 27986721
Wastewater Opportunities for Denitrifying Anaerobic Methane Oxidation.
Wang Y, Wang D, Yang Q, Zeng G, Li X., Trends Biotechnol 35(9), 2017
PMID: 28283198
Conversion of methane-derived carbon and microbial community in enrichment cultures in response to O2 availability.
Wei XM, He R, Chen M, Su Y, Ma RC., Environ Sci Pollut Res Int 23(8), 2016
PMID: 26728286
Methanobactin and the Link between Copper and Bacterial Methane Oxidation.
DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S., Microbiol Mol Biol Rev 80(2), 2016
PMID: 26984926
Anaerobic methane oxidation coupled to nitrite reduction can be a potential methane sink in coastal environments.
Shen LD, Hu BL, Liu S, Chai XP, He ZF, Ren HX, Liu Y, Geng S, Wang W, Tang JL, Wang YM, Lou LP, Xu XY, Zheng P., Appl Microbiol Biotechnol 100(16), 2016
PMID: 27225473
Nitrate- and nitrite-dependent anaerobic oxidation of methane.
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJ, Jetten MS, Lüke C, Reimann J., Environ Microbiol Rep 8(6), 2016
PMID: 27753265
Vertical distribution of nitrite-dependent anaerobic methane-oxidising bacteria in natural freshwater wetland soils.
Shen LD, Huang Q, He ZF, Lian X, Liu S, He YF, Lou LP, Xu XY, Zheng P, Hu BL., Appl Microbiol Biotechnol 99(1), 2015
PMID: 25242345
Biogeographical distribution of denitrifying anaerobic methane oxidizing bacteria in Chinese wetland ecosystems.
Zhu G, Zhou L, Wang Y, Wang S, Guo J, Long XE, Sun X, Jiang B, Hou Q, Jetten MS, Yin C., Environ Microbiol Rep 7(1), 2015
PMID: 25223900
Anaerobic oxidation of methane: an "active" microbial process.
Cui M, Ma A, Qi H, Zhuang X, Zhuang G., Microbiologyopen 4(1), 2015
PMID: 25530008
XoxF-type methanol dehydrogenase from the anaerobic methanotroph “Candidatus Methylomirabilis oxyfera”.
Wu ML, Wessels JC, Pol A, Op den Camp HJ, Jetten MS, van Niftrik L., Appl Environ Microbiol 81(4), 2015
PMID: 25527536
The role of paraffin oil on the interaction between denitrifying anaerobic methane oxidation and Anammox processes.
Fu L, Ding ZW, Ding J, Zhang F, Zeng RJ., Appl Microbiol Biotechnol 99(19), 2015
PMID: 26036704
Methylotrophs in natural habitats: current insights through metagenomics.
Chistoserdova L., Appl Microbiol Biotechnol 99(14), 2015
PMID: 26051673
Autotrophic carbon dioxide fixation via the Calvin-Benson-Bassham cycle by the denitrifying methanotroph "Candidatus Methylomirabilis oxyfera".
Rasigraf O, Kool DM, Jetten MS, Sinninghe Damsté JS, Ettwig KF., Appl Environ Microbiol 80(8), 2014
PMID: 24509918
Evidence for nitrite-dependent anaerobic methane oxidation as a previously overlooked microbial methane sink in wetlands.
Hu BL, Shen LD, Lian X, Zhu Q, Liu S, Huang Q, He ZF, Geng S, Cheng DQ, Lou LP, Xu XY, Zheng P, He YF., Proc Natl Acad Sci U S A 111(12), 2014
PMID: 24616523
Ecological perspectives on microbes involved in N-cycling.
Isobe K, Ohte N., Microbes Environ 29(1), 2014
PMID: 24621510
Simultaneous enrichment of denitrifying methanotrophs and anammox bacteria.
Ding ZW, Ding J, Fu L, Zhang F, Zeng RJ., Appl Microbiol Biotechnol 98(24), 2014
PMID: 25056292
The evolution of respiratory O2/NO reductases: an out-of-the-phylogenetic-box perspective.
Ducluzeau AL, Schoepp-Cothenet B, van Lis R, Baymann F, Russell MJ, Nitschke W., J R Soc Interface 11(98), 2014
PMID: 24968694
High abundance and diversity of nitrite-dependent anaerobic methane-oxidizing bacteria in a paddy field profile.
Zhou L, Wang Y, Long XE, Guo J, Zhu G., FEMS Microbiol Lett 360(1), 2014
PMID: 25109910
Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake.
Deutzmann JS, Stief P, Brandes J, Schink B., Proc Natl Acad Sci U S A 111(51), 2014
PMID: 25472842
Multiple Rieske/cytb complexes in a single organism.
ten Brink F, Schoepp-Cothenet B, van Lis R, Nitschke W, Baymann F., Biochim Biophys Acta 1827(11-12), 2013
PMID: 23507620
Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions.
Nazaries L, Murrell JC, Millard P, Baggs L, Singh BK., Environ Microbiol 15(9), 2013
PMID: 23718889
Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process.
Shen LD, He ZF, Zhu Q, Chen DQ, Lou LP, Xu XY, Zheng P, Hu BL., Front Microbiol 3(), 2012
PMID: 22905032
Bacterial oxygen production in the dark.
Ettwig KF, Speth DR, Reimann J, Wu ML, Jetten MS, Keltjens JT., Front Microbiol 3(), 2012
PMID: 22891064
Co-localization of particulate methane monooxygenase and cd1 nitrite reductase in the denitrifying methanotroph 'Candidatus Methylomirabilis oxyfera'.
Wu ML, van Alen TA, van Donselaar EG, Strous M, Jetten MS, van Niftrik L., FEMS Microbiol Lett 334(1), 2012
PMID: 22681179
Co-occurrence and distribution of nitrite-dependent anaerobic ammonium and methane-oxidizing bacteria in a paddy soil.
Wang Y, Zhu G, Harhangi HR, Zhu B, Jetten MS, Yin C, Op den Camp HJ., FEMS Microbiol Lett 336(2), 2012
PMID: 22889245

39 References

Daten bereitgestellt von Europe PubMed Central.

Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations.
Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA., Appl. Environ. Microbiol. 56(6), 1990
PMID: 2200342
Fe-S cluster assembly pathways in bacteria.
Ayala-Castro C, Saini A, Outten FW., Microbiol. Mol. Biol. Rev. 72(1), 2008
PMID: 18322036
A direct demonstration of ‘co-respiration’ of oxygen and nitrogen oxides by Pseudomonas nautica: some spectral and kinetic properties of the respiratory components
Bonin, FEMS Microbiol Lett 80(), 1991
Bacterial cell shape.
Cabeen MT, Jacobs-Wagner C., Nat. Rev. Microbiol. 3(8), 2005
PMID: 16012516
Iron-sulfur cluster assembly: NifU-directed activation of the nitrogenase Fe protein.
Dos Santos PC, Smith AD, Frazzon J, Cash VL, Johnson MK, Dean DR., J. Biol. Chem. 279(19), 2004
PMID: 14993221
Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea.
Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJ, Jetten MS, Strous M., Environ. Microbiol. 10(11), 2008
PMID: 18721142
Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum.
Ettwig KF, van Alen T, van de Pas-Schoonen KT, Jetten MS, Strous M., Appl. Environ. Microbiol. 75(11), 2009
PMID: 19329658
Nitrite-driven anaerobic methane oxidation by oxygenic bacteria.
Ettwig KF, Butler MK, Le Paslier D, Pelletier E, Mangenot S, Kuypers MM, Schreiber F, Dutilh BE, Zedelius J, de Beer D, Gloerich J, Wessels HJ, van Alen T, Luesken F, Wu ML, van de Pas-Schoonen KT, Op den Camp HJ, Janssen-Megens EM, Francoijs KJ, Stunnenberg H, Weissenbach J, Jetten MS, Strous M., Nature 464(7288), 2010
PMID: 20336137
Oxidative stress responses in Escherichia coli and Salmonella typhimurium.
Farr SB, Kogoma T., Microbiol. Rev. 55(4), 1991
PMID: 1779927
Response of the anaerobe Desulfovibrio vulgaris Hildenborough to oxidative conditions: proteome and transcript analysis.
Fournier M, Aubert C, Dermoun Z, Durand MC, Moinier D, Dolla A., Biochimie 88(1), 2005
PMID: 16040186
The biology of oxygen radicals.
Fridovich I., Science 201(4359), 1978
PMID: 210504
The superfamily of heme-copper respiratory oxidases.
Garcia-Horsman JA, Barquera B, Rumbley J, Ma J, Gennis RB., J. Bacteriol. 176(18), 1994
PMID: 8083153
Induction of superoxide dismutase by molecular oxygen.
Gregory EM, Fridovich I., J. Bacteriol. 114(2), 1973
PMID: 4196244
Methanotrophic bacteria.
Hanson RS, Hanson TE., Microbiol. Rev. 60(2), 1996
PMID: 8801441
A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. Nov
Hoor, Neth J Sea Res 9(), 1975
Adaptation of a freshwater anammox population to high salinity wastewater.
Kartal B, Koleva M, Arsov R, van der Star W, Jetten MS, Strous M., J. Biotechnol. 126(4), 2006
PMID: 16806555
Anaerobic oxidation of methane: progress with an unknown process.
Knittel K, Boetius A., Annu. Rev. Microbiol. 63(), 2009
PMID: 19575572
pmoA Primers for detection of anaerobic methanotrophs.
Luesken FA, Zhu B, van Alen TA, Butler MK, Diaz MR, Song B, Op den Camp HJ, Jetten MS, Ettwig KF., Appl. Environ. Microbiol. 77(11), 2011
PMID: 21460105
Diversity and enrichment of nitrite-dependent anaerobic methane oxidizing bacteria from wastewater sludge.
Luesken FA, van Alen TA, van der Biezen E, Frijters C, Toonen G, Kampman C, Hendrickx TL, Zeeman G, Temmink H, Strous M, Op den Camp HJ, Jetten MS., Appl. Microbiol. Biotechnol. 92(4), 2011
PMID: 21667086
Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria - problems and solutions
Manz, Syst Appl Microbiol 15(), 1992

Neef, 1997
Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes.
Neef A, Amann R, Schlesner H, Schleifer KH., Microbiology (Reading, Engl.) 144 ( Pt 12)(), 1998
PMID: 9884217
Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia.
Op den Camp HJ, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MS, Birkeland NK, Pol A, Dunfield PF., Environ Microbiol Rep 1(5), 2009
PMID: 23765882
A microbial consortium couples anaerobic methane oxidation to denitrification.
Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M., Nature 440(7086), 2006
PMID: 16612380
Aerobic denitrification: a controversy revived
Robertson, Arch Microbiol 139(), 1984
Specific inhibition of the cyanide-insensitive respiratory pathway in plant mitochondria by hydroxamic acids.
Schonbaum GR, Bonner WD Jr, Storey BT, Bahr JT., Plant Physiol. 47(1), 1971
PMID: 5543780
Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge.
Strous M, Van Gerven E, Kuenen JG, Jetten M., Appl. Environ. Microbiol. 63(6), 1997
PMID: 16535633
Role of rubrerythrin in the oxidative stress response of Porphyromonas gingivalis.
Sztukowska M, Bugno M, Potempa J, Travis J, Kurtz DM Jr., Mol. Microbiol. 44(2), 2002
PMID: 11972784
A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus 'Methylomirabilis oxyfera'.
Wu ML, Ettwig KF, Jetten MS, Strous M, Keltjens JT, van Niftrik L., Biochem. Soc. Trans. 39(1), 2011
PMID: 21265781
Physiological role of the respiratory quinol oxidase in the anaerobic nitrite-reducing methanotroph 'Candidatus Methylomirabilis oxyfera'.
Wu ML, de Vries S, van Alen TA, Butler MK, Op den Camp HJ, Keltjens JT, Jetten MS, Strous M., Microbiology (Reading, Engl.) 157(Pt 3), 2010
PMID: 21071492
Cell biology and molecular basis of denitrification.
Zumft WG., Microbiol. Mol. Biol. Rev. 61(4), 1997
PMID: 9409151


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 22221911
PubMed | Europe PMC

Suchen in

Google Scholar