Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection

Kiirika LM, Bergmann HF, Schikowsky C, Wimmer D, Korte J, Schmitz U, Niehaus K, Colditz F (2012)
Plant Physiology 159(1): 501-516.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Kiirika, Leonard Muriithi; Bergmann, Hannah Friederike; Schikowsky, Christine; Wimmer, Diana; Korte, Joschka; Schmitz, Udo; Niehaus, KarstenUniBi; Colditz, Frank
Abstract / Bemerkung
RAC/ROP proteins (rho-related GTPases of plants) are plant-specific small G proteins that function as molecular switches within elementary signal transduction pathways, including the regulation of reactive oxygen species (ROS) generation during early microbial infection via the activation of NADPH oxidase homologs of plants termed RBOH (for respiratory burst oxidase homolog). We investigated the role of Medicago truncatula Jemalong A17 small GTPase MtROP9, orthologous to Medicago sativa Rac1, via an RNA interference silencing approach. Composite M. truncatula plants (MtROP9i) whose roots have been transformed by Agrobacterium rhizogenes carrying the RNA interference vector were generated and infected with the symbiotic arbuscular mycorrhiza fungus Glomus intraradices and the rhizobial bacterium Sinorhizobium meliloti as well as with the pathogenic oomycete Aphanomyces euteiches. MtROP9i transgenic lines showed a clear growth-reduced phenotype and revealed neither ROS generation nor MtROP9 and MtRBOH gene expression after microbial infection. Coincidently, antioxidative compounds were not induced in infected MtROP9i roots, as documented by differential proteomics (two-dimensional differential gel electrophoresis). Furthermore, MtROP9 knockdown clearly promoted mycorrhizal and A. euteiches early hyphal root colonization, while rhizobial infection was clearly impaired. Infected MtROP9i roots showed, in part, extremely swollen noninfected root hairs and reduced numbers of deformed nodules. S. meliloti nodulation factor treatments of MtROP9i led to deformed root hairs showing progressed swelling of its upper regions or even of the entire root hair and spontaneous constrictions but reduced branching effects occurring only at swollen root hairs. These results suggest a key role of Rac1 GTPase MtROP9 in ROS-mediated early infection signaling.
Erscheinungsjahr
2012
Zeitschriftentitel
Plant Physiology
Band
159
Ausgabe
1
Seite(n)
501-516
ISSN
0032-0889
eISSN
1532-2548
Page URI
https://pub.uni-bielefeld.de/record/2501665

Zitieren

Kiirika LM, Bergmann HF, Schikowsky C, et al. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology. 2012;159(1):501-516.
Kiirika, L. M., Bergmann, H. F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., et al. (2012). Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology, 159(1), 501-516. doi:10.1104/pp.112.193706
Kiirika, L. M., Bergmann, H. F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., and Colditz, F. (2012). Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology 159, 501-516.
Kiirika, L.M., et al., 2012. Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology, 159(1), p 501-516.
L.M. Kiirika, et al., “Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection”, Plant Physiology, vol. 159, 2012, pp. 501-516.
Kiirika, L.M., Bergmann, H.F., Schikowsky, C., Wimmer, D., Korte, J., Schmitz, U., Niehaus, K., Colditz, F.: Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection. Plant Physiology. 159, 501-516 (2012).
Kiirika, Leonard Muriithi, Bergmann, Hannah Friederike, Schikowsky, Christine, Wimmer, Diana, Korte, Joschka, Schmitz, Udo, Niehaus, Karsten, and Colditz, Frank. “Silencing of the Rac1 GTPase MtROP9 in Medicago truncatula Stimulates Early Mycorrhizal and Oomycete Root Colonizations But Negatively Affects Rhizobial Infection”. Plant Physiology 159.1 (2012): 501-516.

29 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Small GTPases in plant biotic interactions.
Rivero C, Traubenik S, Zanetti ME, Blanco FA., Small GTPases 10(5), 2019
PMID: 28644721
Comparative phylogenetic and expression analysis of small GTPases families in legume and non-legume plants.
Flores AC, Via VD, Savy V, Villagra UM, Zanetti ME, Blanco F., Plant Signal Behav 13(2), 2018
PMID: 29452030
The monomeric GTPase RabA2 is required for progression and maintenance of membrane integrity of infection threads during root nodule symbiosis.
Dalla Via V, Traubenik S, Rivero C, Aguilar OM, Zanetti ME, Blanco FA., Plant Mol Biol 93(6), 2017
PMID: 28074430
Wheat ROP proteins modulate defense response through lignin metabolism.
Ma QH, Zhu HH, Han JQ., Plant Sci 262(), 2017
PMID: 28716418
Gigaspora margarita with and without its endobacterium shows adaptive responses to oxidative stress.
Venice F, de Pinto MC, Novero M, Ghignone S, Salvioli A, Bonfante P., Mycorrhiza 27(8), 2017
PMID: 28730540
Differential Signaling and Sugar Exchanges in Response to Avirulent Pathogen- and Symbiont-Derived Molecules in Tobacco Cells.
Pfister C, Bourque S, Chatagnier O, Chiltz A, Fromentin J, Van Tuinen D, Wipf D, Leborgne-Castel N., Front Microbiol 8(), 2017
PMID: 29209286
Respiratory Burst Oxidase Homolog Gene A Is Crucial for Rhizobium Infection and Nodule Maturation and Function in Common Bean.
Arthikala MK, Montiel J, Sánchez-López R, Nava N, Cárdenas L, Quinto C., Front Plant Sci 8(), 2017
PMID: 29218056
The Medicago truncatula MtRbohE gene is activated in arbusculated cells and is involved in root cortex colonization.
Belmondo S, Calcagno C, Genre A, Puppo A, Pauly N, Lanfranco L., Planta 243(1), 2016
PMID: 26403286
Legume NADPH Oxidases Have Crucial Roles at Different Stages of Nodulation.
Montiel J, Arthikala MK, Cárdenas L, Quinto C., Int J Mol Sci 17(5), 2016
PMID: 27213330
ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus.
Ke D, Li X, Han Y, Cheng L, Yuan H, Wang L., Plant Physiol Biochem 108(), 2016
PMID: 27592173
The small GTPase ROP10 of Medicago truncatula is required for both tip growth of root hairs and nod factor-induced root hair deformation.
Lei MJ, Wang Q, Li X, Chen A, Luo L, Xie Y, Li G, Luo D, Mysore KS, Wen J, Xie ZP, Staehelin C, Wang YZ., Plant Cell 27(3), 2015
PMID: 25794934
Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana.
Lyons R, Stiller J, Powell J, Rusu A, Manners JM, Kazan K., PLoS One 10(4), 2015
PMID: 25849296
Signaling events during initiation of arbuscular mycorrhizal symbiosis.
Schmitz AM, Harrison MJ., J Integr Plant Biol 56(3), 2014
PMID: 24386977
Cross-interference of plant development and plant-microbe interactions.
Evangelisti E, Rey T, Schornack S., Curr Opin Plant Biol 20(), 2014
PMID: 24922556
Cell-autonomous defense, re-organization and trafficking of membranes in plant-microbe interactions.
Dörmann P, Kim H, Ott T, Schulze-Lefert P, Trujillo M, Wewer V, Hückelhoven R., New Phytol 204(4), 2014
PMID: 25168837
Plasma membrane protein trafficking in plant-microbe interactions: a plant cell point of view.
Nathalie Leborgne-Castel, Bouhidel K., Front Plant Sci 5(), 2014
PMID: 25566303
AtROP1 negatively regulates potato resistance to Phytophthora infestans via NADPH oxidase-mediated accumulation of H2O2.
Zhang Z, Yang F, Na R, Zhang X, Yang S, Gao J, Fan M, Zhao Y, Zhao J., BMC Plant Biol 14(), 2014
PMID: 25547733
Symbiosis and the social network of higher plants.
Venkateshwaran M, Volkening JD, Sussman MR, Ané JM., Curr Opin Plant Biol 16(1), 2013
PMID: 23246268
NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens.
Rey T, Nars A, Bonhomme M, Bottin A, Huguet S, Balzergue S, Jardinaud MF, Bono JJ, Cullimore J, Dumas B, Gough C, Jacquet C., New Phytol 198(3), 2013
PMID: 23432463
Hydrogen peroxide and nitric oxide: key regulators of the Legume-Rhizobium and mycorrhizal symbioses.
Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R., Antioxid Redox Signal 18(16), 2013
PMID: 23249379
Protein actors sustaining arbuscular mycorrhizal symbiosis: underground artists break the silence.
Recorbet G, Abdallah C, Renaut J, Wipf D, Dumas-Gaudot E., New Phytol 199(1), 2013
PMID: 23638913
PvRbohB negatively regulates Rhizophagus irregularis colonization in Phaseolus vulgaris.
Arthikala MK, Montiel J, Nava N, Santana O, Sánchez-López R, Cárdenas L, Quinto C., Plant Cell Physiol 54(8), 2013
PMID: 23788647
A Phaseolus vulgaris NADPH oxidase gene is required for root infection by Rhizobia.
Montiel J, Nava N, Cárdenas L, Sánchez-López R, Arthikala MK, Santana O, Sánchez F, Quinto C., Plant Cell Physiol 53(10), 2012
PMID: 22942250

35 References

Daten bereitgestellt von Europe PubMed Central.

Regulation of rice NADPH oxidase by binding of Rac GTPase to its N-terminal extension.
Wong HL, Pinontoan R, Hayashi K, Tabata R, Yaeno T, Hasegawa K, Kojima C, Yoshioka H, Iba K, Kawasaki T, Shimamoto K., Plant Cell 19(12), 2007
PMID: 18156215
Simultaneous inference in general parametric models.
Hothorn T, Bretz F, Westfall P., Biom J 50(3), 2008
PMID: 18481363
RACK1 functions in rice innate immunity by interacting with the Rac1 immune complex.
Nakashima A, Chen L, Thao NP, Fujiwara M, Wong HL, Kuwano M, Umemura K, Shirasu K, Kawasaki T, Shimamoto K., Plant Cell 20(8), 2008
PMID: 18723578
Evolution of root endosymbiosis with bacteria: How novel are nodules?
Markmann K, Parniske M., Trends Plant Sci. 14(2), 2009
PMID: 19167260
Lipid microdomain polarization is required for NADPH oxidase-dependent ROS signaling in Picea meyeri pollen tube tip growth.
Liu P, Li RL, Zhang L, Wang QL, Niehaus K, Baluska F, Samaj J, Lin JX., Plant J. 60(2), 2009
PMID: 19566595
Analysis of the Rac/Rop small GTPase family in rice: expression, subcellular localization and role in disease resistance.
Chen L, Shiotani K, Togashi T, Miki D, Aoyama M, Wong HL, Kawasaki T, Shimamoto K., Plant Cell Physiol. 51(4), 2010
PMID: 20203239
Characterization and expression analysis of Medicago truncatula ROP GTPase family during the early stage of symbiosis.
Liu W, Chen AM, Luo L, Sun J, Cao LP, Yu GQ, Zhu JB, Wang YZ., J Integr Plant Biol 52(7), 2010
PMID: 20590994
Medicago truncatula proteomics.
Colditz F, Braun HP., J Proteomics 73(10), 2010
PMID: 20621211
Primer3 on the WWW for general users and for biologist programmers.
Rozen S, Skaletsky H., Methods Mol. Biol. 132(), 2000
PMID: 10547847
The TIGR Gene Indices: analysis of gene transcript sequences in highly sampled eukaryotic species.
Quackenbush J, Cho J, Lee D, Liang F, Holt I, Karamycheva S, Parvizi B, Pertea G, Sultana R, White J., Nucleic Acids Res. 29(1), 2001
PMID: 11125077
Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations.
Boisson-Dernier A, Chabaud M, Garcia F, Becard G, Rosenberg C, Barker DG., Mol. Plant Microbe Interact. 14(6), 2001
PMID: 11386364
Small GTPase 'Rop': molecular switch for plant defense responses.
Agrawal GK, Iwahashi H, Rakwal R., FEBS Lett. 546(2-3), 2003
PMID: 12832035
RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula.
Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R., J. Exp. Bot. 55(399), 2004
PMID: 15073217
Exopolysaccharide-deficient mutants of Rhizobium meliloti that form ineffective nodules.
Leigh JA, Signer ER, Walker GC., Proc. Natl. Acad. Sci. U.S.A. 82(18), 1985
PMID: 3862129
The GTPase superfamily: a conserved switch for diverse cell functions.
Bourne HR, Sanders DA, McCormick F., Nature 348(6297), 1990
PMID: 2122258
The GTPase superfamily: conserved structure and molecular mechanism.
Bourne HR, Sanders DA, McCormick F., Nature 349(6305), 1991
PMID: 1898771
The small GTP-binding protein rac is a regulator of cell death in plants.
Kawasaki T, Henmi K, Ono E, Hatakeyama S, Iwano M, Satoh H, Shimamoto K., Proc. Natl. Acad. Sci. U.S.A. 96(19), 1999
PMID: 10485927
Proteomic approach: identification of Medicago truncatula proteins induced in roots after infection with the pathogenic oomycete Aphanomyces euteiches.
Colditz F, Nyamsuren O, Niehaus K, Eubel H, Braun HP, Krajinski F., Plant Mol. Biol. 55(1), 2004
PMID: 15604668
Involvement of the small GTPase Rac in the defense responses of tobacco to pathogens.
Moeder W, Yoshioka K, Klessig DF., Mol. Plant Microbe Interact. 18(2), 2005
PMID: 15720080
Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2.
Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R., Proc. Natl. Acad. Sci. U.S.A. 102(29), 2005
PMID: 16006515
A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells.
Carol RJ, Takeda S, Linstead P, Durrant MC, Kakesova H, Derbyshire P, Drea S, Zarsky V, Dolan L., Nature 438(7070), 2005
PMID: 16355224
Cinnamoyl-CoA reductase, a key enzyme in lignin biosynthesis, is an effector of small GTPase Rac in defense signaling in rice.
Kawasaki T, Koita H, Nakatsubo T, Hasegawa K, Wakabayashi K, Takahashi H, Umemura K, Umezawa T, Shimamoto K., Proc. Natl. Acad. Sci. U.S.A. 103(1), 2005
PMID: 16380417
RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants.
Nibau C, Wu HM, Cheung AY., Trends Plant Sci. 11(6), 2006
PMID: 16737841
ROP/RAC GTPase signaling.
Yang Z, Fu Y., Curr. Opin. Plant Biol. 10(5), 2007
PMID: 17709276

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22399646
PubMed | Europe PMC

Suchen in

Google Scholar