Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus

Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J (2012)
Journal of neurophysiology 107(10): 2581-2593.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Goulet, Julie; van Hemmen, J Leo; Jung, Sarah N; Chagnaud, Boris P; Scholze, Björn; Engelmann, JacobUniBi
Abstract / Bemerkung
Fish and aquatic frogs detect minute water motion by means of a specialized mechanosensory system, the lateral line. Ubiquitous in fish, the lateral-line system is characterized by hair-cell based sensory structures across the fish's surface called neuromasts. These neuromasts occur free-standing on the skin as superficial neuromasts (SN) or are recessed into canals as canal neuromasts. SNs respond to rapid changes of water velocity in a small layer of fluid around the fish, including the so-called boundary layer. Although omnipresent, the boundary layer's impact on the SN response is still a matter of debate. For the first time using an information-theoretic approach to this sensory system, we have investigated the SN afferents encoding capabilities. Combining covariance analysis, phase analysis, and modeling of recorded neuronal responses of primary lateral line afferents, we show that encoding by the SNs is adequately described as a linear, velocity-responsive mechanism. Afferent responses display a bimodal distribution of opposite Wiener kernels that likely reflected the two hair-cell populations within a given neuromast. Using frozen noise stimuli, we further demonstrate that SN afferents respond in an extremely precise manner and with high reproducibility across a broad frequency band (10-150 Hz), revealing that an optimal decoder would need to rely extensively on a temporal code. This was further substantiated by means of signal reconstruction of spike trains that were time shifted with respect to their original. On average, a time shift of 3.5 ms was enough to diminish the encoding capabilities of primary afferents by 70%. Our results further demonstrate that the SNs' encoding capability is linearly related to the stimulus outside the boundary layer, and that the boundary layer can, therefore, be neglected while interpreting lateral line response of SN afferents to hydrodynamic stimuli.
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of neurophysiology
Band
107
Ausgabe
10
Seite(n)
2581-2593
ISSN
0022-3077
eISSN
1522-1598
Page URI
https://pub.uni-bielefeld.de/record/2500521

Zitieren

Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Journal of neurophysiology. 2012;107(10):2581-2593.
Goulet, J., van Hemmen, J. L., Jung, S. N., Chagnaud, B. P., Scholze, B., & Engelmann, J. (2012). Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Journal of neurophysiology, 107(10), 2581-2593. doi:10.1152/jn.01073.2011
Goulet, Julie, van Hemmen, J Leo, Jung, Sarah N, Chagnaud, Boris P, Scholze, Björn, and Engelmann, Jacob. 2012. “Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus”. Journal of neurophysiology 107 (10): 2581-2593.
Goulet, J., van Hemmen, J. L., Jung, S. N., Chagnaud, B. P., Scholze, B., and Engelmann, J. (2012). Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Journal of neurophysiology 107, 2581-2593.
Goulet, J., et al., 2012. Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Journal of neurophysiology, 107(10), p 2581-2593.
J. Goulet, et al., “Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus”, Journal of neurophysiology, vol. 107, 2012, pp. 2581-2593.
Goulet, J., van Hemmen, J.L., Jung, S.N., Chagnaud, B.P., Scholze, B., Engelmann, J.: Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus. Journal of neurophysiology. 107, 2581-2593 (2012).
Goulet, Julie, van Hemmen, J Leo, Jung, Sarah N, Chagnaud, Boris P, Scholze, Björn, and Engelmann, Jacob. “Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus”. Journal of neurophysiology 107.10 (2012): 2581-2593.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiplexed temporal coding of electric communication signals in mormyrid fishes.
Baker CA, Kohashi T, Lyons-Warren AM, Ma X, Carlson BA., J Exp Biol 216(pt 13), 2013
PMID: 23761462

76 References

Daten bereitgestellt von Europe PubMed Central.

What causes a neuron to spike?
Aguera y Arcas B, Fairhall AL., Neural Comput 15(8), 2003
PMID: 14511513
Computation in a single neuron: Hodgkin and Huxley revisited.
Aguera y Arcas B, Fairhall AL, Bialek W., Neural Comput 15(8), 2003
PMID: 14511510
Somatotopy of the lateral line projection in larval zebrafish.
Alexandre D, Ghysen A., Proc. Natl. Acad. Sci. U.S.A. 96(13), 1999
PMID: 10377454

AUTHOR UNKNOWN, 0
Reading a neural code.
Bialek W, Rieke F, de Ruyter van Steveninck RR, Warland D., Science 252(5014), 1991
PMID: 2063199

AUTHOR UNKNOWN, 0
Adaptive rescaling maximizes information transmission.
Brenner N, Bialek W, de Ruyter van Steveninck R., Neuron 26(3), 2000
PMID: 10896164

AUTHOR UNKNOWN, 0
Nonlinear information processing in a model sensory system.
Chacron MJ., J. Neurophysiol. 95(5), 2006
PMID: 16495358
Neural responses of goldfish lateral line afferents to vortex motions.
Chagnaud BP, Bleckmann H, Engelmann J., J. Exp. Biol. 209(Pt 2), 2006
PMID: 16391355
Karman vortex street detection by the lateral line.
Chagnaud BP, Bleckmann H, Hofmann MH., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(7), 2007
PMID: 17503054
Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Measuring flow velocity and flow direction by spatial and temporal analysis of flow fluctuations.
Chagnaud BP, Brucker C, Hofmann MH, Bleckmann H., J. Neurosci. 28(17), 2008
PMID: 18434526
Source location encoding in the fish lateral line canal.
Curcic-Blake B, van Netten SM., J. Exp. Biol. 209(Pt 8), 2006
PMID: 16574811

Dayan, 2001

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Coding of lateral line stimuli in the goldfish midbrain in still and running water.
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Coding of stimuli by ampullary afferents in Gnathonemus petersii.
Engelmann J, Gertz S, Goulet J, Schuh A, von der Emde G., J. Neurophysiol. 104(4), 2010
PMID: 20685928
Lateral line reception in still- and running water.
Engelmann J, Hanke W, Bleckmann H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(7), 2002
PMID: 12209340
Hydrodynamic stimuli and the fish lateral line.
Engelmann J, Hanke W, Mogdans J, Bleckmann H., Nature 408(6808), 2000
PMID: 11081502
Effects of running water on lateral line responses to moving objects.
Engelmann J, Krother S, Bleckmann H, Mogdans J., Brain Behav. Evol. 61(4), 2003
PMID: 12784057
Burst firing is a neural code in an insect auditory system.
Eyherabide HG, Rokem A, Herz AV, Samengo I., Front Comput Neurosci 2(), 2008
PMID: 18946533
Bursts generate a non-reducible spike-pattern code.
Eyherabide HG, Rokem A, Herz AV, Samengo I., Front Neurosci 3(1), 2009
PMID: 19753092
Selectivity for multiple stimulus features in retinal ganglion cells.
Fairhall AL, Burlingame CA, Narasimhan R, Harris RA, Puchalla JL, Berry MJ 2nd., J. Neurophysiol. 96(5), 2006
PMID: 16914609
Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation.
Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H., PLoS ONE 4(2), 2009
PMID: 19223970
Wake tracking and the detection of vortex rings by the canal lateral line of fish.
Franosch JM, Hagedorn HJ, Goulet J, Engelmann J, van Hemmen JL., Phys. Rev. Lett. 103(7), 2009
PMID: 19792690

AUTHOR UNKNOWN, 0
From stimulus encoding to feature extraction in weakly electric fish.
Gabbiani F, Metzner W, Wessel R, Koch C., Nature 384(6609), 1996
PMID: 8955269
Object localization through the lateral line system of fish: theory and experiment.
Goulet J, Engelmann J, Chagnaud BP, Franosch JM, Suttner MD, van Hemmen JL., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(1), 2007
PMID: 18060550
Limits of linear rate coding of dynamic stimuli by electroreceptor afferents.
Gussin D, Benda J, Maler L., J. Neurophysiol. 97(4), 2007
PMID: 17287436

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
The microphonic activity of the lateral line.
JIELOF R, SPOOR A, DE VRIES H., J. Physiol. (Lond.) 116(2), 1952
PMID: 14928229
Robust temporal coding in the trigeminal system.
Jones LM, Depireux DA, Simons DJ, Keller A., Science 304(5679), 2004
PMID: 15218153
Precise temporal responses in whisker trigeminal neurons.
Jones LM, Lee S, Trageser JC, Simons DJ, Keller A., J. Neurophysiol. 92(1), 2004
PMID: 14999053

AUTHOR UNKNOWN, 0
Measuring spike train synchrony.
Kreuz T, Haas JS, Morelli A, Abarbanel HD, Politi A., J. Neurosci. Methods 165(1), 2007
PMID: 17628690
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Frequency response of the lateral-line organ of Xenopus laevis.
Kroese AB, Van der Zalm JM, Van den Bercken J., Pflugers Arch. 375(2), 1978
PMID: 567787
Brainstem lateral line responses to sinusoidal wave stimuli in still and running water.
Krother S, Mogdans J, Bleckmann H., J. Exp. Biol. 205(Pt 10), 2002
PMID: 11976358
Representation of acoustic communication signals by insect auditory receptor neurons.
Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV., J. Neurosci. 21(9), 2001
PMID: 11312306
A behavioral role for feature detection by sensory bursts.
Marsat G, Pollack GS., J. Neurosci. 26(41), 2006
PMID: 17035539
Transient signals trigger synchronous bursts in an identified population of neurons.
Marsat G, Proville RD, Maler L., J. Neurophysiol. 102(2), 2009
PMID: 19474165
Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system.
McHenry MJ, Strother JA, van Netten SM., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 194(9), 2008
PMID: 18709377
Feature extraction by burst-like spike patterns in multiple sensory maps.
Metzner W, Koch C, Wessel R, Gabbiani F., J. Neurosci. 18(6), 1998
PMID: 9482813

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378

AUTHOR UNKNOWN, 0
Using computational fluid dynamics to calculate the stimulus to the lateral line of a fish in still water.
Rapo MA, Jiang H, Grosenbaugh MA, Coombs S., J. Exp. Biol. 212(Pt 10), 2009
PMID: 19411543

Rieke, 1997
Assessing the performance of neural encoding models in the presence of noise.
Roddey JC, Girish B, Miller JP., J Comput Neurosci 8(2), 2000
PMID: 10798596
Use of behavioural stochastic resonance by paddle fish for feeding.
Russell DF, Wilkens LA, Moss F., Nature 402(6759), 1999
PMID: 10580499
Neural variability, detection thresholds, and information transmission in the vestibular system.
Sadeghi SG, Chacron MJ, Taylor MC, Cullen KE., J. Neurosci. 27(4), 2007
PMID: 17251416

Schlichting, 2003
Organization of the superficial neuromast system in goldfish, Carassius auratus.
Schmitz A, Bleckmann H, Mogdans J., J. Morphol. 269(6), 2008
PMID: 18431809
Two-dimensional time coding in the auditory brainstem.
Slee SJ, Higgs MH, Fairhall AL, Spain WJ., J. Neurosci. 25(43), 2005
PMID: 16251446

AUTHOR UNKNOWN, 0
Temporal encoding in nervous systems: a rigorous definition.
Theunissen F, Miller JP., J Comput Neurosci 2(2), 1995
PMID: 8521284
Information theoretic analysis of dynamical encoding by four identified primary sensory interneurons in the cricket cercal system.
Theunissen F, Roddey JC, Stufflebeam S, Clague H, Miller JP., J. Neurophysiol. 75(4), 1996
PMID: 8727382

van, SIAM J Appl Math 61(), 2001
A novel spike distance.
van Rossum MC., Neural Comput 13(4), 2001
PMID: 11255567
Responses of anterior lateral line afferent neurones to water flow.
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Coding of time-varying electric field amplitude modulations in a wave-type electric fish.
Wessel R, Koch C, Gabbiani F., J. Neurophysiol. 75(6), 1996
PMID: 8793741

AUTHOR UNKNOWN, 0
Assessing neuronal coherence with single-unit, multi-unit, and local field potentials.
Zeitler M, Fries P, Gielen S., Neural Comput 18(9), 2006
PMID: 16846392
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22378175
PubMed | Europe PMC

Suchen in

Google Scholar