Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe

Lenger J, Kaschani F, Lenz T, Dalhoff C, Villamor JG, Köster H, Sewald N, van der Hoorn RAL (2012)
Bioorganic & Medical Chemistry 20(2): 592-596.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ;
Erscheinungsjahr
Zeitschriftentitel
Bioorganic & Medical Chemistry
Band
20
Ausgabe
2
Seite(n)
592-596
ISSN
PUB-ID

Zitieren

Lenger J, Kaschani F, Lenz T, et al. Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorganic & Medical Chemistry. 2012;20(2):592-596.
Lenger, J., Kaschani, F., Lenz, T., Dalhoff, C., Villamor, J. G., Köster, H., Sewald, N., et al. (2012). Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorganic & Medical Chemistry, 20(2), 592-596. doi:10.1016/j.bmc.2011.06.068
Lenger, J., Kaschani, F., Lenz, T., Dalhoff, C., Villamor, J. G., Köster, H., Sewald, N., and van der Hoorn, R. A. L. (2012). Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorganic & Medical Chemistry 20, 592-596.
Lenger, J., et al., 2012. Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorganic & Medical Chemistry, 20(2), p 592-596.
J. Lenger, et al., “Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe”, Bioorganic & Medical Chemistry, vol. 20, 2012, pp. 592-596.
Lenger, J., Kaschani, F., Lenz, T., Dalhoff, C., Villamor, J.G., Köster, H., Sewald, N., van der Hoorn, R.A.L.: Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe. Bioorganic & Medical Chemistry. 20, 592-596 (2012).
Lenger, Janina, Kaschani, Farnusch, Lenz, Thomas, Dalhoff, Christian, Villamor, Joji Grace, Köster, Hubert, Sewald, Norbert, and van der Hoorn, Renier A.L. “Labeling and enrichment of Arabidopsis thaliana matrix metalloproteases using an active-site directed, marimastat-based photoreactive probe”. Bioorganic & Medical Chemistry 20.2 (2012): 592-596.

9 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Multiplex Fluorescent, Activity-Based Protein Profiling Identifies Active α-Glycosidases and Other Hydrolases in Plants.
Husaini AM, Morimoto K, Chandrasekar B, Kelly S, Kaschani F, Palmero D, Jiang J, Kaiser M, Ahrazem O, Overkleeft HS, van der Hoorn RAL., Plant Physiol 177(1), 2018
PMID: 29555787
Discovery of Arabidopsis UGT73C1 as a steviol-catalyzing UDP-glycosyltransferase with chemical probes.
Zhou Y, Li W, You W, Di Z, Wang M, Zhou H, Yuan S, Wong NK, Xiao Y., Chem Commun (Camb) 54(52), 2018
PMID: 29892740
Investigation of the anti-angiogenesis effects induced by deoxypodophyllotoxin-5-FU conjugate C069 against HUVE cells.
Xiang R, Guan XW, Hui L, Jin YX, Chen SW., Bioorg Med Chem Lett 27(4), 2017
PMID: 28129979
Synthesis of hybrid 4-deoxypodophyllotoxin-5-fluorouracil compounds that inhibit cellular migration and induce cell cycle arrest.
Guan XW, Xu XH, Feng SL, Tang ZB, Chen SW, Hui L., Bioorg Med Chem Lett 26(6), 2016
PMID: 26873416
The Increasing Impact of Activity-Based Protein Profiling in Plant Science.
Morimoto K, van der Hoorn RA., Plant Cell Physiol 57(3), 2016
PMID: 26872839
Broad-range glycosidase activity profiling.
Chandrasekar B, Colby T, Emran Khan Emon A, Jiang J, Hong TN, Villamor JG, Harzen A, Overkleeft HS, van der Hoorn RA., Mol Cell Proteomics 13(10), 2014
PMID: 25056938
Using S-adenosyl-L-homocysteine capture compounds to characterize S-adenosyl-L-methionine and S-adenosyl-L-homocysteine binding proteins.
Brown LJ, Baranowski M, Wang Y, Schrey AK, Lenz T, Taverna SD, Cole PA, Sefkow M., Anal Biochem 467(), 2014
PMID: 25172130
Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection.
Misas-Villamil JC, Toenges G, Kolodziejek I, Sadaghiani AM, Kaschani F, Colby T, Bogyo M, van der Hoorn RA., Plant J 73(4), 2013
PMID: 23134548
Active/inactive dual-probe system for selective photoaffinity labeling of small molecule-binding proteins.
Sakurai K, Tawa M, Okada A, Yamada R, Sato N, Inahara M, Inoue M., Chem Asian J 7(7), 2012
PMID: 22514195

54 References

Daten bereitgestellt von Europe PubMed Central.

Matrix metalloproteinases: a review.
Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkedal-Hansen B, DeCarlo A, Engler JA., Crit. Rev. Oral Biol. Med. 4(2), 1993
PMID: 8435466
MEROPS: the peptidase database.
Rawlings ND, Barrett AJ, Bateman A., Nucleic Acids Res. 38(Database issue), 2009
PMID: 19892822
Proteolytic remodeling of extracellular matrix.
Birkedal-Hansen H., Curr. Opin. Cell Biol. 7(5), 1995
PMID: 8573349
Sequencing and characterization of the soybean leaf metalloproteinase : structural and functional similarity to the matrix metalloproteinase family.
McGeehan G, Burkhart W, Anderegg R, Becherer JD, Gillikin JW, Graham JS., Plant Physiol. 99(3), 1992
PMID: 16668986
Matrix metalloproteinase homologues from Arabidopsis thaliana. Expression and activity.
Maidment JM, Moore D, Murphy GP, Murphy G, Clark IM., J. Biol. Chem. 274(49), 1999
PMID: 10574937
A membrane-bound matrix-metalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens.
Schiermeyer A, Hartenstein H, Mandal MK, Otte B, Wahner V, Schillberg S., BMC Plant Biol. 9(), 2009
PMID: 19563670

Kang, Plant Pathol. J. 26(), 2010
The matrix metalloproteinase gene GmMMP2 is activated in response to pathogenic infections in soybean.
Liu Y, Dammann C, Bhattacharyya MK., Plant Physiol. 127(4), 2001
PMID: 11743122
Biochemical properties of the matrix metalloproteinase NtMMP1 from Nicotiana tabacum cv. BY-2 suspension cells.
Mandal MK, Fischer R, Schillberg S, Schiermeyer A., Planta 232(4), 2010
PMID: 20635096
Chemical tools for activity-based proteomics.
Hagenstein MC, Sewald N., J. Biotechnol. 124(1), 2006
PMID: 16442651
Activity-based protein profiling: from enzyme chemistry to proteomic chemistry.
Cravatt BF, Wright AT, Kozarich JW., Annu. Rev. Biochem. 77(), 2008
PMID: 18366325
Mining the active proteome in plant science and biotechnology.
Kolodziejek I, van der Hoorn RA., Curr. Opin. Biotechnol. 21(2), 2010
PMID: 20197235
Activity profiling of papain-like cysteine proteases in plants.
van der Hoorn RA, Leeuwenburgh MA, Bogyo M, Joosten MH, Peck SC., Plant Physiol. 135(3), 2004
PMID: 15266051
Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato.
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA., Plant Cell 20(4), 2008
PMID: 18451324
Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities.
Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RA., Plant J. 62(1), 2009
PMID: 20042019

Kolodziejek, Plant Physiol. 154(), 2011
Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana.
Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RA., Mol. Cell Proteomics 8(5), 2009
PMID: 19136719
Active site-directed protein regulation.
Kobe B, Kemp BE., Nature 402(6760), 1999
PMID: 10586874

Hagenstein, Angew. Chem., Int. Ed. 42(), 2003
Activity-based probes for the proteomic profiling of metalloproteases.
Saghatelian A, Jessani N, Joseph A, Humphrey M, Cravatt BF., Proc. Natl. Acad. Sci. U.S.A. 101(27), 2004
PMID: 15220480
Proteomic profiling of metalloprotease activities with cocktails of active-site probes.
Sieber SA, Niessen S, Hoover HS, Cravatt BF., Nat. Chem. Biol. 2(5), 2006
PMID: 16565715
Solid-phase synthesis of succinylhydroxamate peptides: functionalized matrix metalloproteinase inhibitors.
Leeuwenburgh MA, Geurink PP, Klein T, Kauffman HF, van der Marel GA, Bischoff R, Overkleeft HS., Org. Lett. 8(8), 2006
PMID: 16597146

Geurink, Eur. J. Org. Chem. 11(), 2010
Developing photoactive affinity probes for proteomic profiling: hydroxamate-based probes for metalloproteases.
Chan EW, Chattopadhaya S, Panicker RC, Huang X, Yao SQ., J. Am. Chem. Soc. 126(44), 2004
PMID: 15521763

David, Angew. Chem., Int. Ed. 46(), 2007

Bregant, J. Prot. Res. 8(), 2009
Capture compound mass spectrometry: a technology for the investigation of small molecule protein interactions.
Koster H, Little DP, Luan P, Muller R, Siddiqi SM, Marappan S, Yip P., Assay Drug Dev Technol 5(3), 2007
PMID: 17638538
Synthesis of S-adenosyl-L-homocysteine capture compounds for selective photoinduced isolation of methyltransferases.
Dalhoff C, Huben M, Lenz T, Poot P, Nordhoff E, Koster H, Weinhold E., Chembiochem 11(2), 2010
PMID: 20049756
Comprehensive identification of staurosporine-binding kinases in the hepatocyte cell line HepG2 using Capture Compound Mass Spectrometry (CCMS).
Fischer JJ, Graebner Baessler OY, Dalhoff C, Michaelis S, Schrey AK, Ungewiss J, Andrich K, Jeske D, Kroll F, Glinski M, Sefkow M, Dreger M, Koester H., J. Proteome Res. 9(2), 2010
PMID: 20028079
GDP-capture compound--a novel tool for the profiling of GTPases in pro- and eukaryotes by capture compound mass spectrometry (CCMS).
Luo Y, Fischer JJ, Baessler OY, Schrey AK, Ungewiss J, Glinski M, Sefkow M, Dreger M, Koester H., J Proteomics 73(4), 2009
PMID: 20026263
Capture compound mass spectrometry sheds light on the molecular mechanisms of liver toxicity of two Parkinson drugs.
Fischer JJ, Michaelis S, Schrey AK, Graebner OG, Glinski M, Dreger M, Kroll F, Koester H., Toxicol. Sci. 113(1), 2009
PMID: 19783845

AUTHOR UNKNOWN, 0

Beckett, Drug Discovery Today 1(), 1996
Molecular tools for metalloprotease sub-proteome generation.
Collet M, Lenger J, Jenssen K, Plattner HP, Sewald N., J. Biotechnol. 129(2), 2006
PMID: 17207876

Fleming, Tetrahedron 51(), 1995
Solution phase isomerization of vibrationally excited singlet nitrenes to vibrationally excited 1,2-didehydroazepine.
Burdzinski GT, Middleton CT, Gustafson TL, Platz MS., J. Am. Chem. Soc. 128(46), 2006
PMID: 17105280

Soundararajan, J. Org. Chem. 55(), 1990
Photocrosslinkers illuminate interactions in living cells.
Tanaka Y, Bond MR, Kohler JJ., Mol Biosyst 4(6), 2008
PMID: 18493640
Benzophenone photophores in biochemistry.
Dorman G, Prestwich GD., Biochemistry 33(19), 1994
PMID: 8180191

Van, Mol. Plant–Microbe Interact. 13(), 2000

Ries, Biochem. J. 495(), 2007
Autolytic activation of recombinant human 72 kilodalton type IV collagenase.
Bergmann U, Tuuttila A, Stetler-Stevenson WG, Tryggvason K., Biochemistry 34(9), 1995
PMID: 7893694
Mercurial activation of human PMN leucocyte type IV procollagenase (gelatinase).
Triebel S, Blaser J, Reinke H, Knauper V, Tschesche H., FEBS Lett. 298(2-3), 1992
PMID: 1312026
Fungal effector protein AVR2 targets diversifying defense-related cys proteases of tomato.
Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA., Plant Cell 20(4), 2008
PMID: 18451324

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21775155
PubMed | Europe PMC

Suchen in

Google Scholar