Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text
Cimiano P, Hotho A, Staab S (2004)
In: Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004. López de Mántaras R, Saitta L (Eds); IOS Press: 435-439.
Konferenzbeitrag
| Veröffentlicht | Englisch
Download
Autor*in
Cimiano, PhilippUniBi ;
Hotho, Andreas;
Staab, Steffen
Herausgeber*in
López de Mántaras, Ramon;
Saitta, Lorenza
Einrichtung
Erscheinungsjahr
2004
Titel des Konferenzbandes
Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004
Seite(n)
435-439
Konferenz
16. European Conference on Artificial Intelligence (ECAI' 2004)
Konferenzort
Valencia, Spain
Konferenzdatum
2004-08-22/2004-08-27
ISBN
1-58603-452-9
Page URI
https://pub.uni-bielefeld.de/record/2497819
Zitieren
Cimiano P, Hotho A, Staab S. Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text. In: López de Mántaras R, Saitta L, eds. Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004. IOS Press; 2004: 435-439.
Cimiano, P., Hotho, A., & Staab, S. (2004). Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text. In R. López de Mántaras & L. Saitta (Eds.), Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004 (pp. 435-439). IOS Press.
Cimiano, Philipp, Hotho, Andreas, and Staab, Steffen. 2004. “Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text”. In Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, ed. Ramon López de Mántaras and Lorenza Saitta, 435-439. IOS Press.
Cimiano, P., Hotho, A., and Staab, S. (2004). “Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text” in Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, López de Mántaras, R., and Saitta, L. eds. (IOS Press), 435-439.
Cimiano, P., Hotho, A., & Staab, S., 2004. Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text. In R. López de Mántaras & L. Saitta, eds. Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004. IOS Press, pp. 435-439.
P. Cimiano, A. Hotho, and S. Staab, “Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text”, Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004, R. López de Mántaras and L. Saitta, eds., IOS Press, 2004, pp.435-439.
Cimiano, P., Hotho, A., Staab, S.: Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text. In: López de Mántaras, R. and Saitta, L. (eds.) Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004. p. 435-439. IOS Press (2004).
Cimiano, Philipp, Hotho, Andreas, and Staab, Steffen. “Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text”. Proceedings of the 16th European Conference on Artificial Intelligence, ECAI'2004, including Prestigious Applicants of Intelligent Systems, PAIS 2004. Ed. Ramon López de Mántaras and Lorenza Saitta. IOS Press, 2004. 435-439.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Name
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:03Z
MD5 Prüfsumme
359ac2976f7047b33a699a98136b4748