QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers

Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H (2012)
Molecular Ecology 21(2): 329-339.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schielzeth, HolgerUniBi ; Forstmeier, W.; Kempenaers, B.; Ellegren, H.
Abstract / Bemerkung
Avian wing length is an important trait that covaries with the ecology and migratory behaviour of a species and tends to change rapidly when the conditions are altered. Long-distance migrants typically have longer wings than short-distance migrants and sedentary species, and long-winged species also tend to be more dispersive. Although the substantial heritability of avian wing length is well established, the identification of causal genes has remained elusive. Based on large-scale genotyping of 1404 informative single nucleotide polymorphisms (SNP) in a captive population of 1067 zebra finches, we here show that the within-population variation of relative wing length (h2 = 0.74 ± 0.05) is associated with standing genetic variation in at least six genomic regions (one genomewide significant and five suggestive). The variance explained by these six quantitative trait loci (QTL) sums to 36.8% of the phenotypic variance (half of the additive genetic variance), although this likely is an overestimate attributable to the Beavis effect. As avian wing length is primarily determined by the length of the primary feathers, we then searched for candidate genes that are related to feather growth. Interestingly, all of the QTL signals co-locate with Wnt growth factors and closely interacting genes (Wnt3a, Wnt5a, Wnt6, Wnt7a, Wnt9a, RhoU and RhoV). Our findings therefore suggest that standing genetic variation in the Wnt genes might be linked to avian wing morphology, although there are many other genes that also fall within the confidence regions.
Erscheinungsjahr
2012
Zeitschriftentitel
Molecular Ecology
Band
21
Ausgabe
2
Seite(n)
329-339
ISSN
0962-1083
Page URI
https://pub.uni-bielefeld.de/record/2496140

Zitieren

Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Molecular Ecology. 2012;21(2):329-339.
Schielzeth, H., Forstmeier, W., Kempenaers, B., & Ellegren, H. (2012). QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Molecular Ecology, 21(2), 329-339. doi:10.1111/j.1365-294X.2011.05365.x
Schielzeth, Holger, Forstmeier, W., Kempenaers, B., and Ellegren, H. 2012. “QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers”. Molecular Ecology 21 (2): 329-339.
Schielzeth, H., Forstmeier, W., Kempenaers, B., and Ellegren, H. (2012). QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Molecular Ecology 21, 329-339.
Schielzeth, H., et al., 2012. QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Molecular Ecology, 21(2), p 329-339.
H. Schielzeth, et al., “QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers”, Molecular Ecology, vol. 21, 2012, pp. 329-339.
Schielzeth, H., Forstmeier, W., Kempenaers, B., Ellegren, H.: QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers. Molecular Ecology. 21, 329-339 (2012).
Schielzeth, Holger, Forstmeier, W., Kempenaers, B., and Ellegren, H. “QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers”. Molecular Ecology 21.2 (2012): 329-339.

13 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations.
Knief U, Schielzeth H, Backström N, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W., Mol Ecol 26(5), 2017
PMID: 28100011
Insights into the genetic architecture of morphological traits in two passerine bird species.
Silva CNS, McFarlane SE, Hagen IJ, Rönnegård L, Billing AM, Kvalnes T, Kemppainen P, Rønning B, Ringsby TH, Sæther BE, Qvarnström A, Ellegren H, Jensen H, Husby A., Heredity (Edinb) 119(3), 2017
PMID: 28613280
Natural history collections as windows on evolutionary processes.
Holmes MW, Hammond TT, Wogan GO, Walsh RE, LaBarbera K, Wommack EA, Martins FM, Crawford JC, Mack KL, Bloch LM, Nachman MW., Mol Ecol 25(4), 2016
PMID: 26757135
Overview on the Role of Advance Genomics in Conservation Biology of Endangered Species.
Khan S, Nabi G, Ullah MW, Yousaf M, Manan S, Siddique R, Hou H., Int J Genomics 2016(), 2016
PMID: 28025636
Genomic analysis of a migratory divide reveals candidate genes for migration and implicates selective sweeps in generating islands of differentiation.
Delmore KE, Hübner S, Kane NC, Schuster R, Andrew RL, Câmara F, Guigó R, Irwin DE., Mol Ecol 24(8), 2015
PMID: 25808860
Conservation genomics of threatened animal species.
Steiner CC, Putnam AS, Hoeck PE, Ryder OA., Annu Rev Anim Biosci 1(), 2013
PMID: 25387020
A quantitative trait locus analysis of personality in wild bighorn sheep.
Poissant J, Réale D, Martin J, Festa-Bianchet M, Coltman D., Ecol Evol 3(3), 2013
PMID: 23531519
Partitioning of genetic variation across the genome using multimarker methods in a wild bird population.
Robinson MR, Santure AW, Decauwer I, Sheldon BC, Slate J., Mol Ecol 22(15), 2013
PMID: 23848161
QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch.
Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W., Mol Ecol 21(15), 2012
PMID: 22694741
Genetic architecture of migration-related traits in rainbow and steelhead trout, Oncorhynchus mykiss.
Hecht BC, Thrower FP, Hale MC, Miller MR, Nichols KM., G3 (Bethesda) 2(9), 2012
PMID: 22973549

53 References

Daten bereitgestellt von Europe PubMed Central.

The recombination landscape of the zebra finch Taeniopygia guttata genome.
Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H., Genome Res. 20(4), 2010
PMID: 20357052

Beavis, 1984
Distinct Wnt members regulate the hierarchical morphogenesis of skin regions (spinal tract) and individual feathers.
Chang CH, Jiang TX, Lin CM, Burrus LW, Chuong CM, Widelitz R., Mech. Dev. 121(2), 2004
PMID: 15037317
Shift of localized growth zones contributes to skin appendage morphogenesis: role of the Wnt/beta-catenin pathway.
Chodankar R, Chang CH, Yue Z, Jiang TX, Suksaweang S, Burrus L, Chuong CM, Widelitz R., J. Invest. Dermatol. 120(1), 2003
PMID: 12535194
Ecomorphological predictors of natal dispersal distances in birds.
Dawideit BA, Phillimore AB, Laube I, Leisler B, Bohning-Gaese K., J Anim Ecol 78(2), 2008
PMID: 19040685
Evolutionary stasis: the stable chromosomes of birds.
Ellegren H., Trends Ecol. Evol. (Amst.) 25(5), 2010
PMID: 20363047

Falconer, 1996
Highly parallel SNP genotyping.
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS., Cold Spring Harb. Symp. Quant. Biol. 68(), 2003
PMID: 15338605
Cryptic multiple hypotheses testing in linear models: overestimated effect sizes and the winner's curse.
Forstmeier W, Schielzeth H., Behav. Ecol. Sociobiol. (Print) 65(1), 2010
PMID: 21297852
Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata)
FORSTMEIER W, SCHIELZETH H, SCHNEIDER M, KEMPENAERS B., Mol. Ecol. Notes 7(6), 2007
PMID: IND43974441
Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata).
Forstmeier W, Segelbacher G, Mueller JC, Kempenaers B., Mol. Ecol. 16(19), 2007
PMID: 17894758

Gilmour, 2002
Shh-Bmp2 signaling module and the evolutionary origin and diversification of feathers.
Harris MP, Fallon JF, Prum RO., J. Exp. Zool. 294(2), 2002
PMID: 12210117
A web application to perform linkage disequilibrium and linkage analyses on a computational grid.
Hernandez-Sanchez J, Grunchec JA, Knott S., Bioinformatics 25(11), 2009
PMID: 19318423
Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution.
International Chicken Genome Sequencing Consortium., Nature 432(7018), 2004
PMID: 15592404
cDermo-1 misexpression induces dense dermis, feathers, and scales.
Hornik C, Krishan K, Yusuf F, Scaal M, Brand-Saberi B., Dev. Biol. 277(1), 2005
PMID: 15572138
Sexual variation in heritability and genetic correlations of morphological traits in house sparrow (Passer domesticus).
Jensen H, Saether BE, Ringsby TH, Tufto J, Griffith SC, Ellegren H., J. Evol. Biol. 16(6), 2003
PMID: 14640421
Molecular signaling in feather morphogenesis.
Lin CM, Jiang TX, Widelitz RB, Chuong CM., Curr. Opin. Cell Biol. 18(6), 2006
PMID: 17049829
Avian wingtip shape reconsidered: wingtip shape indices and morphological adaptations to migration
Lockwood, Journal of Avian Biology 29(), 1998
Poor performance of bootstrap confidence intervals for the location of a quantitative trait locus.
Manichaikul A, Dupuis J, Sen S, Broman KW., Genetics 174(1), 2006
PMID: 16783000
Components of variance underlying fitness in a natural population of the great tit Parus major.
McCleery RH, Pettifor RA, Armbruster P, Meyer K, Sheldon BC, Perrins CM., Am. Nat. 164(3), 2004
PMID: 15478083
Lifetime Reproductive Success and Heritability in Nature.
Merila J, Sheldon BC., Am. Nat. 155(3), 2000
PMID: 10718727
Do migrant birds have more pointed wings? A comparative study
Mönkkönen, Evolutionary Ecology 9(), 1995
beta-catenin signaling can initiate feather bud development.
Noramly S, Freeman A, Morgan BA., Development 126(16), 1999
PMID: 10409498
A simple and rapid method for calculating identity-by-descent matrices using multiple markers
Pong-Wong, Genetics Selection Evolution 33(), 2001
Contemporary evolution of reproductive isolation and phenotypic divergence in sympatry along a migratory divide.
Rolshausen G, Segelbacher G, Hobson KA, Schaefer HM., Curr. Biol. 19(24), 2009
PMID: 19962309
Avian skin development and the evolutionary origin of feathers
Sawyer, Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 298B(), 2003
Origin of feathers: feather beta (β) keratins are expressed in discrete epidermal cell populations of embryonic scutate scales
Sawyer, Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 295B(), 2003
QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait
Schielzeth, Evolution (), 2011
Asymptotic properties of maximum-likelihood estimators and likelihood ratio tests under nonstandard conditions
Self, Journal of the American Statistical Association 82(), 1987
Dispersal of introduced house sparrows Passer domesticus: an experiment
Skjelseth, Proceedings of the Royal Society B-Biological Sciences 274(), 2007

Svensson, 1992
A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers
Tarka, Proceedings of the Royal Society B-Biological Sciences 1692(), 2010
Wing shape variation in the medium ground finch (Geospiza fortis): an ecomorphological approach
VANHOOYDONCK BIEKE, HERREL ANTHONY, GABELA ANA, PODOS JEFFREY., Biol. J. Linn. Soc. Lond. 98(1), 2009
PMID: IND44251333
Morphological correlates of migratory distance and flight display in the avian genus Anthus
Voelker, Biological Journal of the Linnean Society 73(), 2001
The genome of a songbird.
Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, Nam K, Backstrom N, Smeds L, Nabholz B, Itoh Y, Whitney O, Pfenning AR, Howard J, Volker M, Skinner BM, Griffin DK, Ye L, McLaren WM, Flicek P, Quesada V, Velasco G, Lopez-Otin C, Puente XS, Olender T, Lancet D, Smit AF, Hubley R, Konkel MK, Walker JA, Batzer MA, Gu W, Pollock DD, Chen L, Cheng Z, Eichler EE, Stapley J, Slate J, Ekblom R, Birkhead T, Burke T, Burt D, Scharff C, Adam I, Richard H, Sultan M, Soldatov A, Lehrach H, Edwards SV, Yang SP, Li X, Graves T, Fulton L, Nelson J, Chinwalla A, Hou S, Mardis ER, Wilson RK., Nature 464(7289), 2010
PMID: 20360741
Molecular biology of feather morphogenesis: a testable model for evo-devo research
Widelitz, Journal of Experimental Zoology Part B-Molecular and Developmental Evolution 298B(), 2003
Theoretical basis of the Beavis effect.
Xu S., Genetics 165(4), 2003
PMID: 14704201
Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia
Yue, Proceedings of the National Academy of Sciences USA 103(), 2006

Zann, 1996
Material in PUB:
Zitiert
Data from: QTL linkage mapping of wing length in zebra finch using genome-wide single nucleotide polymorphisms markers
Schielzeth H, Forstmeier W, Kempenaers B, Ellegren H (2011) : Dryad Digital Repository. doi:10.5061/DRYAD.5FJ1310P.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22111790
PubMed | Europe PMC

Suchen in

Google Scholar