QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait

Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2012)
Evolution 66(1): 18-30.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Schielzeth, HolgerUniBi ; Kempenaers, Bart; Ellegren, Hans; Forstmeier, Wolfgang
Abstract / Bemerkung
Mate choice based on sexual ornaments can impose strong selection, which raises the question of how genetic variation in ornaments is maintained. One mechanism that has been proposed is genic capture. If ornament expression is influenced by general condition and condition is under polygenic control, selection will be inefficient in removing genetic variation. Here we analyze whether the genetic architecture of beak color in a population of zebra finches supports this hypothesis. Zebra finch beak color is commonly assumed to be under strong selection by mate choice, although some of the evidence is ambiguous. We show that beak redness has a heritability of 34% in our population and that it is strongly genetically correlated between the sexes, suggesting that it is largely controlled by the same genes in males and females. We mapped variation in beak redness based on 1,404 SNP markers genotyped in a large pedigree. We find evidence for linkage on four chromosomes (Tgu1, Tgu5, Tgu13, Tgu21), which together explain a large part of the additive genetic variance. Our finding of genomic regions with major additive effects is not consistent with directional selection and genic capture, but rather suggests a role of antagonistic pleiotropy in maintaining genetic variation.
Erscheinungsjahr
2012
Zeitschriftentitel
Evolution
Band
66
Ausgabe
1
Seite(n)
18-30
ISSN
0014-3820
Page URI
https://pub.uni-bielefeld.de/record/2496134

Zitieren

Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W. QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution. 2012;66(1):18-30.
Schielzeth, H., Kempenaers, B., Ellegren, H., & Forstmeier, W. (2012). QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution, 66(1), 18-30. doi:10.1111/j.1558-5646.2011.01431.x
Schielzeth, Holger, Kempenaers, Bart, Ellegren, Hans, and Forstmeier, Wolfgang. 2012. “QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait”. Evolution 66 (1): 18-30.
Schielzeth, H., Kempenaers, B., Ellegren, H., and Forstmeier, W. (2012). QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution 66, 18-30.
Schielzeth, H., et al., 2012. QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution, 66(1), p 18-30.
H. Schielzeth, et al., “QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait”, Evolution, vol. 66, 2012, pp. 18-30.
Schielzeth, H., Kempenaers, B., Ellegren, H., Forstmeier, W.: QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait. Evolution. 66, 18-30 (2012).
Schielzeth, Holger, Kempenaers, Bart, Ellegren, Hans, and Forstmeier, Wolfgang. “QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait”. Evolution 66.1 (2012): 18-30.

27 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Colour ornamentation in the blue tit: quantitative genetic (co)variances across sexes.
Charmantier A, Wolak ME, Grégoire A, Fargevieille A, Doutrelant C., Heredity (Edinb) 118(2), 2017
PMID: 27577691
Meiotic recombination shapes precision of pedigree- and marker-based estimates of inbreeding.
Knief U, Kempenaers B, Forstmeier W., Heredity (Edinb) 118(3), 2017
PMID: 27804967
The Evolution and Genetics of Carotenoid Processing in Animals.
Toews DPL, Hofmeister NR, Taylor SA., Trends Genet 33(3), 2017
PMID: 28174022
Association mapping of morphological traits in wild and captive zebra finches: reliable within, but not between populations.
Knief U, Schielzeth H, Backström N, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Ellegren H, Kempenaers B, Forstmeier W., Mol Ecol 26(5), 2017
PMID: 28100011
Quantifying realized inbreeding in wild and captive animal populations.
Knief U, Hemmrich-Stanisak G, Wittig M, Franke A, Griffith SC, Kempenaers B, Forstmeier W., Heredity (Edinb) 114(4), 2015
PMID: 25585923
Differential effects of genetic vs. environmental quality in Drosophila melanogaster suggest multiple forms of condition dependence.
Bonduriansky R, Mallet MA, Arbuthnott D, Pawlowsky-Glahn V, Egozcue JJ, Rundle HD., Ecol Lett 18(4), 2015
PMID: 25649176
Variation in promiscuity and sexual selection drives avian rate of Faster-Z evolution.
Wright AE, Harrison PW, Zimmer F, Montgomery SH, Pointer MA, Mank JE., Mol Ecol 24(6), 2015
PMID: 25689782
The locus of sexual selection: moving sexual selection studies into the post-genomics era.
Wilkinson GS, Breden F, Mank JE, Ritchie MG, Higginson AD, Radwan J, Jaquiery J, Salzburger W, Arriero E, Barribeau SM, Phillips PC, Renn SC, Rowe L., J Evol Biol 28(4), 2015
PMID: 25789690
A prezygotic transmission distorter acting equally in female and male zebra finches Taeniopygia guttata.
Knief U, Schielzeth H, Ellegren H, Kempenaers B, Forstmeier W., Mol Ecol 24(15), 2015
PMID: 26087713
Genetic Architecture of the Variation in Male-Specific Ossified Processes on the Anal Fins of Japanese Medaka.
Kawajiri M, Fujimoto S, Yoshida K, Yamahira K, Kitano J., G3 (Bethesda) 5(12), 2015
PMID: 26511497
Genetic Architecture of Conspicuous Red Ornaments in Female Threespine Stickleback.
Yong L, Peichel CL, McKinnon JS., G3 (Bethesda) 6(3), 2015
PMID: 26715094
Nonautosomal genetic variation in carotenoid coloration.
Evans SR, Schielzeth H, Forstmeier W, Sheldon BC, Husby A., Am Nat 184(3), 2014
PMID: 25141146
Sex chromosome linked genetic variance and the evolution of sexual dimorphism of quantitative traits.
Husby A, Schielzeth H, Forstmeier W, Gustafsson L, Qvarnström A., Evolution 67(3), 2013
PMID: 23461313
Female ornaments revisited - are they correlated with offspring quality?
Nordeide JT, Kekäläinen J, Janhunen M, Kortet R., J Anim Ecol 82(1), 2013
PMID: 23194443
Partitioning of genetic variation across the genome using multimarker methods in a wild bird population.
Robinson MR, Santure AW, Decauwer I, Sheldon BC, Slate J., Mol Ecol 22(15), 2013
PMID: 23848161
Free and esterified carotenoids in ornaments of an avian species: the relationship to color expression and sources of variability.
García-de Blas E, Mateo R, Viñuela J, Pérez-Rodríguez L, Alonso-Alvarez C., Physiol Biochem Zool 86(5), 2013
PMID: 23995480
QTL and quantitative genetic analysis of beak morphology reveals patterns of standing genetic variation in an Estrildid finch.
Knief U, Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W., Mol Ecol 21(15), 2012
PMID: 22694741
Bill redness is positively associated with reproduction and survival in male and female zebra finches.
Simons MJ, Briga M, Koetsier E, Folkertsma R, Wubs MD, Dijkstra C, Verhulst S., PLoS One 7(7), 2012
PMID: 22808243

66 References

Daten bereitgestellt von Europe PubMed Central.

An experimental test of the dose-dependent effect of carotenoids and immune activation on sexual signals and antioxidant activity.
Alonso-Alvarez C, Bertrand S, Devevey G, Gaillard M, Prost J, Faivre B, Sorci G., Am. Nat. 164(5), 2004
PMID: 15540154
The recombination landscape of the zebra finch Taeniopygia guttata genome.
Backstrom N, Forstmeier W, Schielzeth H, Mellenius H, Nam K, Bolund E, Webster MT, Ost T, Schneider M, Kempenaers B, Ellegren H., Genome Res. 20(4), 2010
PMID: 20357052

Beavis, 1998
Ultraviolet vision and mate choice in zebra finches
Bennett, Nature 380(), 1996
Mapping quantitative trait Loci underlying fitness-related traits in a free-living sheep population.
Beraldi D, McRae AF, Gratten J, Slate J, Visscher PM, Pemberton JM., Evolution 61(6), 2007
PMID: 17542849
Do carotenoid-based sexual traits signal the availability of non-pigmentary antioxidants?
Bertrand S, Faivre B, Sorci G., J. Exp. Biol. 209(Pt 22), 2006
PMID: 17079711
Genic capture and the genetic basis of sexually selected traits in the zebra finch.
Birkhead TR, Pellatt EJ, Matthews IM, Roddis NJ, Hunter FM, McPhie F, Castillo-Juarez H., Evolution 60(11), 2006
PMID: 17236429
Carotenoid modulation of immune function and sexual attractiveness in zebra finches.
Blount JD, Metcalfe NB, Birkhead TR, Surai PF., Science 300(5616), 2003
PMID: 12677066
Intrasexual competition in zebra finches, the role of beak colour and body size
Bolund, Anim. Behav. 74(), 2007
Inbreeding depression of sexually selected traits and attractiveness in the zebra finch
Bolund, Anim. Behav. 79(), 2010
No heightened condition dependence of zebra finch ornaments--a quantitative genetic approach.
Bolund E, Schielzeth H, Forstmeier W., J. Evol. Biol. 23(3), 2010
PMID: 20074304

Borgia, 1979
Bill color preferences of zebra finches
Burley, Ethology 76(), 1987
Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer.
Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MD, Brady SD, Southwick AM, Absher DM, Grimwood J, Schmutz J, Myers RM, Petrov D, Jonsson B, Schluter D, Bell MA, Kingsley DM., Science 327(5963), 2009
PMID: 20007865
The genetic basis of sexually selected variation
Chenoweth, Annu. Rev. Ecol. Evol. Syst. 41(), 2010
Carotenoid action on the immune response
Chew, J. Nutr. 134(), 2004
Female mate choice in the zebra finch: the effect of male beak color and male song
Collins, Behav. Ecol. Sociobiol. 35(), 1994
Does beak colour affect female preference in zebra finches?
Collins, Anim. Behav. 52(), 1996
Dominance variance: associations with selection and fitness
Crnokrak, Heredity 75(), 1995
Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken.
Eriksson J, Larson G, Gunnarsson U, Bed'hom B, Tixier-Boichard M, Stromstedt L, Wright D, Jungerius A, Vereijken A, Randi E, Jensen P, Andersson L., PLoS Genet. 4(2), 2008
PMID: 18454198
Highly parallel SNP genotyping.
Fan JB, Oliphant A, Shen R, Kermani BG, Garcia F, Gunderson KL, Hansen M, Steemers F, Butler SL, Deloukas P, Galver L, Hunt S, McBride C, Bibikova M, Rubano T, Chen J, Wickham E, Doucet D, Chang W, Campbell D, Zhang B, Kruglyak S, Bentley D, Haas J, Rigault P, Zhou L, Stuelpnagel J, Chee MS., Cold Spring Harb. Symp. Quant. Biol. 68(), 2003
PMID: 15338605
Common variation in the beta-carotene 15,15'-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study.
Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T, Silander K, Rice N, Melzer D, Murray A, Cluett C, Fried LP, Albanes D, Corsi AM, Cherubini A, Guralnik J, Bandinelli S, Singleton A, Virtamo J, Walston J, Semba RD, Frayling TM., Am. J. Hum. Genet. 84(2), 2009
PMID: 19185284
Repeatability of mate choice in the zebra finch: consistency within and between females
Forstmeier, Anim. Behav. 68(), 2004
Development of polymorphic microsatellite markers for the zebra finch (Taeniopygia guttata)
FORSTMEIER W, SCHIELZETH H, SCHNEIDER M, KEMPENAERS B., Mol. Ecol. Notes 7(6), 2007
PMID: IND43974441
Genetic variation and differentiation in captive and wild zebra finches (Taeniopygia guttata).
Forstmeier W, Segelbacher G, Mueller JC, Kempenaers B., Mol. Ecol. 16(19), 2007
PMID: 17894758
Are responses to artificial selection for reproductive fitness characters consistently asymmetrical?
Frankham, Genet. Res. 56(), 1990
The presence of females modulates the expression of a carotenoid-based sexual signal
Gautier, Behav. Ecol. Sociobiol. 62(), 2008
Inference from iterative simulation using multiple sequences
Gelman, Stat. Sci. 7(), 1992
MCMC methods for multi-response Generalized Linear Mixed Models: the MCMCglmm R package
Hadfield, J. Stat. Softw. 33(), 2010
A web application to perform linkage disequilibrium and linkage analyses on a computational grid.
Hernandez-Sanchez J, Grunchec JA, Knott S., Bioinformatics 25(11), 2009
PMID: 19318423
Natural selection stops the evolution of male attractiveness
Hine, Proc. Natl. Acad. Sci. USA (), 2011
Why most discovered true associations are inflated.
Ioannidis JP., Epidemiology 19(5), 2008
PMID: 18633328
Genetic linkage between a sexually selected trait and X chromosome meiotic drive
Johns, Proc. R. Soc. B 272(), 2005
Horn type and horn length genes map to the same chromosomal region in Soay sheep.
Johnston SE, Beraldi D, McRae AF, Pemberton JM, Slate J., Heredity (Edinb) 104(2), 2009
PMID: 19690581
A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila.
Kiefer C, Sumser E, Wernet MF, Von Lintig J., Proc. Natl. Acad. Sci. U.S.A. 99(16), 2002
PMID: 12136129
A role for a neo-sex chromosome in stickleback speciation.
Kitano J, Ross JA, Mori S, Kume M, Jones FC, Chan YF, Absher DM, Grimwood J, Schmutz J, Myers RM, Kingsley DM, Peichel CL., Nature 461(7267), 2009
PMID: 19783981
Diet, plasma carotenoids, and sexual coloration in the zebra finch (Taeniopygia guttata)
McGraw, Auk 120(), 2003
Carotenoid accumulation in the tissues of zebra finches: predictors of integumentary pigmentation and implications for carotenoid allocation strategies
McGraw, Physiol. Biol. 83(), 2010
Costly sexual signals: are carotenoids rare, risky or required?
Olson VA, Owens IP., Trends Ecol. Evol. (Amst.) 13(12), 1998
PMID: 21238418

AUTHOR UNKNOWN, 0
A resolution of the lek paradox
Pomiankowski, Proc. R. Soc. Lond. B 260(), 1995
Sexual selection, selection load and quantitative genetics of zebra finch bill colour
Price, Proc. R. Soc. Lond. B 263(), 1996
Constraints on the evolution of attractive traits: selection in male and female zebra finches
Price, Am. Nat. 144(), 1994
The lek paradox and the capture of genetic variance by condition dependent traits
Rowe, Proc. R. Soc. Lond. B 263(), 1996
Zebra finch females prefer males with redder bills independent of song rate-a meta-analysis
Simons, Behav. Ecol. 22(), 2011
A genome scan for quantitative trait loci in a wild population of red deer (Cervus elaphus)
Slate, Geneticsa 162(), 2002
Discrimination among males by female zebra finches based on past as well as current phenotype
Sullivan, Ethology 96(), 1994
A strong quantitative trait locus for wing length on chromosome 2 in a wild population of great reed warblers
Tarka, Proc. R. Soc. B 1692(), 2010
Genic capture and resolving the lek paradox.
Tomkins JL, Radwan J, Kotiaho JS, Tregenza T., Trends Ecol. Evol. (Amst.) 19(6), 2004
PMID: 16701278
Genetic linkage map of the guppy, Poecilia reticulata, and quantitative trait loci analysis of male size and colour variation
Tripathi, Proc. R. Soc. B 276(), 2009
Analysis of the blind Drosophila mutant ninaB identifies the gene encoding the key enzyme for vitamin A formation in vivo
von, Proc. Natl. Acad. Sci. USA 98(), 2001
The role of sexual imprinting for sex recognition in zebra finches: a difference between males and females
Vos, Anim. Behav. 50(), 1995
Candidate genes for carotenoid coloration in vertebrates and their expression profiles in the carotenoid-containing plumage and bill of a wild bird
Walsh, Proc. R. Soc. B (), 2011
The genetic architecture of a female sexual ornament.
Wright D, Kerje S, Brandstrom H, Schutz K, Kindmark A, Andersson L, Jensen P, Pizzari T., Evolution 62(1), 2007
PMID: 18053076
Material in PUB:
Zitiert
Data from: QTL linkage mapping of zebra finch beak color shows an oligogenic control of a sexually selected trait
Schielzeth H, Kempenaers B, Ellegren H, Forstmeier W (2011) : Dryad Digital Repository. doi:10.5061/DRYAD.R044B.
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22220861
PubMed | Europe PMC

Suchen in

Google Scholar