Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected

Demant M, Trapphoff T, Froehlich T, Arnold GJ, Eichenlaub-Ritter U (2012)
Human Reproduction 27(4): 1096-1111.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Demant, Myriam; Trapphoff, Tom; Froehlich, Thomas; Arnold, Georg J.; Eichenlaub-Ritter, UrsulaUniBi
Abstract / Bemerkung
Vitrification is a fast and effective method to cryopreserve ovarian tissue, but it might influence mitochondrial activity and affect gene expression to cause persistent alterations in the proteome of oocytes that grow and mature following cryopreservation. In part one of the study, the inner mitochondrial membrane potential ((mit)) of JC-1 stained oocytes from control and CryoTop vitrified pre-antral follicles was analyzed by confocal microscopy at Day 0, or after culture of follicles for 1 or 12 days. In part two, proteins of in vivo grown germinal vesicle (GV) oocytes were subjected to proteome analysis by SDS polyacrylamide gel electrophoresis, tryptic in-gel digestion of gel slices, and one-dimensional-nano-liquid chromatography of peptides on a multi-dimensional-nano-liquid chromatography system followed by mass spectrometry (LC-MS/MS) and Uniprot Gene Ontology (GO) analysis. In part three, samples containing the protein amount of 40 GV and metaphase II (MII) oocytes, respectively, from control and vitrified pre-antral follicles cultured for 12 or 13 days were subjected to 2D DIGE saturation labeling and separated by isoelectric focusing and SDS gel electrophoresis (2D DIGE), followed by DeCyder(Tm) analysis of spot patterns in three independent biological replicates. Statistical and hierarchical cluster analysis was employed to compare control and vitrified groups. (i) Mitochondrial inner membrane potential differs significantly between control and vitrified GV oocytes at Day 0 and Day 1, but is similar at Day 12 of culture. (ii) LC-MS/MS analysis of SDS gel fractionated protein lysates of 988 mouse GV oocytes revealed identification of 1123 different proteins with a false discovery rate of 1. GO analysis assigned 811 proteins to the obiological process' subset. Thirty-five percent of the proteins corresponded to metabolic processes, about 15 to mitochondrion and transport, each, and close to 8 to oxidation-reduction processes. (iii) From the 2D-saturation DIGE analysis 1891 matched spots for GV-stage and 1718 for MII oocyte proteins were detected and the related protein abundances in vitrified and control oocytes were quantified. None of the spots was significantly altered in intensity, and hierarchical cluster analysis as well as histograms of p and q values suggest that vitrification at the pre-antral stage does not significantly alter the proteome of GV or MII oocytes compared with controls. Vitrification appears to be associated with a significant transient increase in (mit) in oocyte mitochondria, which disappears when oocyte/cumulus cell apposition is restored upon development to the antral stage. The nano-LC-MS/MS analysis of low numbers of oocytes is useful to obtain information on relevant biological signaling pathways based on protein identifications. For quantitative comparisons, saturation 2D DIGE analysis is superior to LC-MS/MS due to its high sensitivity in cases where the biological material is very limited. Genetic background, age of the female, and/or stimulation protocol appear to influence the proteome pattern. However, the quantitative 2D DIGE approach provides evidence that vitrification does not affect the oocyte proteome after recovery from transient loss of cellcell interactions, in vitro growth and in vitro maturation under tested conditions. Therefore, transient changes in mitochondrial activity by vitrification do not appear causal to persistent alterations in the mitochondrial or overall oocyte proteome.
mitochondria; follicle development; oocyte quality; gene expression
Human Reproduction
Page URI


Demant M, Trapphoff T, Froehlich T, Arnold GJ, Eichenlaub-Ritter U. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Human Reproduction. 2012;27(4):1096-1111.
Demant, M., Trapphoff, T., Froehlich, T., Arnold, G. J., & Eichenlaub-Ritter, U. (2012). Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Human Reproduction, 27(4), 1096-1111. doi:10.1093/humrep/der453
Demant, Myriam, Trapphoff, Tom, Froehlich, Thomas, Arnold, Georg J., and Eichenlaub-Ritter, Ursula. 2012. “Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected”. Human Reproduction 27 (4): 1096-1111.
Demant, M., Trapphoff, T., Froehlich, T., Arnold, G. J., and Eichenlaub-Ritter, U. (2012). Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Human Reproduction 27, 1096-1111.
Demant, M., et al., 2012. Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Human Reproduction, 27(4), p 1096-1111.
M. Demant, et al., “Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected”, Human Reproduction, vol. 27, 2012, pp. 1096-1111.
Demant, M., Trapphoff, T., Froehlich, T., Arnold, G.J., Eichenlaub-Ritter, U.: Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected. Human Reproduction. 27, 1096-1111 (2012).
Demant, Myriam, Trapphoff, Tom, Froehlich, Thomas, Arnold, Georg J., and Eichenlaub-Ritter, Ursula. “Vitrification at the pre-antral stage transiently alters inner mitochondrial membrane potential but proteome of in vitro grown and matured mouse oocytes appears unaffected”. Human Reproduction 27.4 (2012): 1096-1111.

15 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

In vitro growth and development of isolated secondary follicles from vitrified caprine ovarian cortex.
Leal ÉSS, Vieira LA, Sá NAR, Silva GM, Lunardi FO, Ferreira ACA, Campello CC, Alves BG, Cibin FWS, Smitz J, Figueiredo JR, Rodrigues APR., Reprod Fertil Dev 30(2), 2018
PMID: 28768567
Missing and overexpressing proteins in domestic cat oocytes following vitrification and in vitro maturation as revealed by proteomic analysis.
Turathum B, Roytrakul S, Changsangfa C, Sroyraya M, Tanasawet S, Kitiyanant Y, Saikhun K., Biol Res 51(1), 2018
PMID: 30124164
Protein profile of mouse ovarian follicles grown in vitro.
Anastácio A, Rodriguez-Wallberg KA, Chardonnet S, Pionneau C, Fédérici C, Almeida Santos T, Poirot C., Mol Hum Reprod 23(12), 2017
PMID: 29069483
Postovulatory aging affects dynamics of mRNA, expression and localization of maternal effect proteins, spindle integrity and pericentromeric proteins in mouse oocytes.
Trapphoff T, Heiligentag M, Dankert D, Demond H, Deutsch D, Fröhlich T, Arnold GJ, Grümmer R, Horsthemke B, Eichenlaub-Ritter U., Hum Reprod 31(1), 2016
PMID: 26577303
Modulation of aquaporins 3 and 9 after exposure of ovine ovarian tissue to cryoprotectants followed by in vitro culture.
Sales AD, Duarte AB, Santos RR, Alves KA, Lima LF, Rodrigues GQ, Brito IR, Lobo CH, Bruno JB, Locatelli Y, Figueiredo JR, Rodrigues AP., Cell Tissue Res 365(2), 2016
PMID: 26975215
Preovulatory Aging In Vivo and In Vitro Affects Maturation Rates, Abundance of Selected Proteins, Histone Methylation Pattern and Spindle Integrity in Murine Oocytes.
Demond H, Trapphoff T, Dankert D, Heiligentag M, Grümmer R, Horsthemke B, Eichenlaub-Ritter U., PLoS One 11(9), 2016
PMID: 27611906
Ovarian tissue vitrification is more efficient than slow freezing in protecting oocyte and granulosa cell DNA integrity.
Mathias FJ, D'Souza F, Uppangala S, Salian SR, Kalthur G, Adiga SK., Syst Biol Reprod Med 60(6), 2014
PMID: 24896655
Assessment of mouse germinal vesicle stage oocyte quality by evaluating the cumulus layer, zona pellucida, and perivitelline space.
Zhou HX, Ma YZ, Liu YL, Chen Y, Zhou CJ, Wu SN, Shen JP, Liang CG., PLoS One 9(8), 2014
PMID: 25144310
Pre- and postovulatory aging of murine oocytes affect the transcript level and poly(A) tail length of maternal effect genes.
Dankert D, Demond H, Trapphoff T, Heiligentag M, Rademacher K, Eichenlaub-Ritter U, Horsthemke B, Grümmer R., PLoS One 9(10), 2014
PMID: 25271735
Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos.
Dalcin L, Silva RC, Paulini F, Silva BD, Neves JP, Lucci CM., Cryobiology 67(2), 2013
PMID: 23770514
Does cryopreservation of ovarian tissue affect the distribution and function of germinal vesicle oocytes mitochondria?
Salehnia M, Töhönen V, Zavareh S, Inzunza J., Biomed Res Int 2013(), 2013
PMID: 23956986

131 References

Daten bereitgestellt von Europe PubMed Central.

Vitrification at the germinal vesicle stage does not affect the methylation profile of H19 and KCNQ1OT1 imprinting centers in human oocytes subsequently matured in vitro.
Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachere T, Greze C, Lornage J, Lefevre A., Fertil. Steril. 95(6), 2011
PMID: 21420679
Dynamic proteome signatures in gametes, embryos and their maternal environment.
Arnold GJ, Frohlich T., Reprod. Fertil. Dev. 23(1), 2011
PMID: 21366984
Notch signaling: cell fate control and signal integration in development.
Artavanis-Tsakonas S, Rand MD, Lake RJ., Science 284(5415), 1999
PMID: 10221902
Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G., Nat. Genet. 25(1), 2000
PMID: 10802651
Development of naked growing mouse oocytes in vitro.
Bachvarova R, Baran MM, Tejblum A., J. Exp. Zool. 211(2), 1980
PMID: 6989948
Highly sensitive saturation labeling reveals changes in abundance of cell cycle-associated proteins and redox enzyme variants during oocyte maturation in vitro.
Berendt FJ, Frohlich T, Bolbrinker P, Boelhauve M, Gungor T, Habermann FA, Wolf E, Arnold GJ., Proteomics 9(3), 2009
PMID: 19137544
Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos.
Burns KH, Viveiros MM, Ren Y, Wang P, DeMayo FJ, Frail DE, Eppig JJ, Matzuk MM., Science 300(5619), 2003
PMID: 12714744
Intronic miR-301 feedback regulates its host gene, ska2, in A549 cells by targeting MEOX2 to affect ERK/CREB pathways.
Cao G, Huang B, Liu Z, Zhang J, Xu H, Xia W, Li J, Li S, Chen L, Ding H, Zhao Q, Fan M, Shen B, Shao N., Biochem. Biophys. Res. Commun. 396(4), 2010
PMID: 20470754
Consequences of metaphase II oocyte cryopreservation on mRNA content.
Chamayou S, Bonaventura G, Alecci C, Tibullo D, Di Raimondo F, Guglielmino A, Barcellona ML., Cryobiology 62(2), 2011
PMID: 21272569
Assessment of oocyte quality following repeated gonadotropin stimulation in the mouse.
Combelles CM, Albertini DF., Biol. Reprod. 68(3), 2003
PMID: 12604630
Vitrification may increase the rate of chromosome misalignment in the metaphase II spindle of human mature oocytes.
Coticchio G, Bromfield JJ, Sciajno R, Gambardella A, Scaravelli G, Borini A, Albertini DF., Reprod. Biomed. Online 19 Suppl 3(), 2009
PMID: 20034421
Acetylation of H4K12 in porcine oocytes during in vitro aging: potential role of ooplasmic reactive oxygen species.
Cui MS, Wang XL, Tang DW, Zhang J, Liu Y, Zeng SM., Theriogenology 75(4), 2010
PMID: 21074839
Meiosis-activating sterol protects oocytes from precocious chromosome segregation.
Cukurcam S, Hegele-Hartung C, Eichenlaub-Ritter U., Hum. Reprod. 18(9), 2003
PMID: 12923148
Gene expression and development of mouse zygotes following droplet vitrification.
Dhali A, Anchamparuthy VM, Butler SP, Pearson RE, Mullarky IK, Gwazdauskas FC., Theriogenology 68(9), 2007
PMID: 17915304
Children born after autotransplantation of cryopreserved ovarian tissue. a review of 13 live births.
Donnez J, Silber S, Andersen CY, Demeestere I, Piver P, Meirow D, Pellicer A, Dolmans MM., Ann. Med. 43(6), 2011
PMID: 21226660
Mitochondrial function and redox state in mammalian embryos.
Dumollard R, Carroll J, Duchen MR, Campbell K, Swann K., Semin. Cell Dev. Biol. 20(3), 2009
PMID: 19530278
H4 replication-dependent diacetylation and Hat1 promote S-phase chromatin assembly in vivo.
Ejlassi-Lassallette A, Mocquard E, Arnaud MC, Thiriet C., Mol. Biol. Cell 22(2), 2010
PMID: 21118997
Target-decoy search strategy for mass spectrometry-based proteomics.
Elias JE, Gygi SP., Methods Mol. Biol. 604(), 2010
PMID: 20013364
Cryoprotectant toxicity neutralization.
Fahy GM., Cryobiology 60(3 Suppl), 2009
PMID: 19501081
Cryoprotectant toxicity and cryoprotectant toxicity reduction: in search of molecular mechanisms.
Fahy GM, Lilley TH, Linsdell H, Douglas MS, Meryman HT., Cryobiology 27(3), 1990
PMID: 2199153
P-body loss is concomitant with formation of a messenger RNA storage domain in mouse oocytes.
Flemr M, Ma J, Schultz RM, Svoboda P., Biol. Reprod. 82(5), 2010
PMID: 20075394
[Greatwall, a new guardian of mitosis].
Gharbi-Ayachi A, Burgess A, Vigneron S, Labbe JC, Castro A, Lorca T., Med Sci (Paris) 27(4), 2011
PMID: 21524395
Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality.
Gilchrist RB, Lane M, Thompson JG., Hum. Reprod. Update 14(2), 2008
PMID: 18175787
Connecting with Ska, a key complex at the kinetochore-microtubule interface.
Guimaraes GJ, Deluca JG., EMBO J. 28(10), 2009
PMID: 19458608
Expression of ADP-ribosylation factor-like protein 8B mRNA in the brain is down-regulated in mice fed a high-fat diet.
Haraguchi T, Yanaka N, Nogusa Y, Sumiyoshi N, Eguchi Y, Kato N., Biosci. Biotechnol. Biochem. 70(7), 2006
PMID: 16861820
Effects of vitrification solutions and equilibration times on the morphology of cynomolgus ovarian tissues.
Hashimoto S, Suzuki N, Yamanaka M, Hosoi Y, Ishizuka B, Morimoto Y., Reprod. Biomed. Online 21(4), 2010
PMID: 20817609
Maternal and zygotic Dnmt1 are necessary and sufficient for the maintenance of DNA methylation imprints during preimplantation development.
Hirasawa R, Chiba H, Kaneda M, Tajima S, Li E, Jaenisch R, Sasaki H., Genes Dev. 22(12), 2008
PMID: 18559477
Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene.
Howell CY, Bestor TH, Ding F, Latham KE, Mertineit C, Trasler JM, Chaillet JR., Cell 104(6), 2001
PMID: 11290321
Effects of low O2 and ageing on spindles and chromosomes in mouse oocytes from pre-antral follicle culture.
Hu Y, Betzendahl I, Cortvrindt R, Smitz J, Eichenlaub-Ritter U., Hum. Reprod. 16(4), 2001
PMID: 11278227
Cryopreservation of human ovarian tissue by solid-surface vitrification.
Huang L, Mo Y, Wang W, Li Y, Zhang Q, Yang D., Eur. J. Obstet. Gynecol. Reprod. Biol. 139(2), 2008
PMID: 18455864
Female meiosis: coming unglued with age.
Hunt P, Hassold T., Curr. Biol. 20(17), 2010
PMID: 20833308
An oocentric view of folliculogenesis and embryogenesis.
Hutt KJ, Albertini DF., Reprod. Biomed. Online 14(6), 2007
PMID: 17579993
Involvement of mouse nucleoplasmin 2 in the decondensation of sperm chromatin after fertilization.
Inoue A, Ogushi S, Saitou M, Suzuki MG, Aoki F., Biol. Reprod. 85(1), 2011
PMID: 21415138
Modified vitrification of human pronuclear oocytes: efficacy and effect on ultrastructure.
Isachenko V, Selman H, Isachenko E, Montag M, El-Danasouri I, Nawroth F., Reprod. Biomed. Online 7(2), 2003
PMID: 14567894
Cryobanking of human ovarian tissue for anti-cancer treatment: comparison of vitrification and conventional freezing
Isachenko, CryoLetters 30(), 2009
Shugoshin-PP2A counteracts casein-kinase-1-dependent cleavage of Rec8 by separase.
Ishiguro T, Tanaka K, Sakuno T, Watanabe Y., Nat. Cell Biol. 12(5), 2010
PMID: 20383139
AAA+ proteins RUVBL1 and RUVBL2 coordinate PIKK activity and function in nonsense-mediated mRNA decay.
Izumi N, Yamashita A, Iwamatsu A, Kurata R, Nakamura H, Saari B, Hirano H, Anderson P, Ohno S., Sci Signal 3(116), 2010
PMID: 20371770
Oxidative metabolism of pyruvate is required for meiotic maturation of murine oocytes in vivo.
Johnson MT, Freeman EA, Gardner DK, Hunt PA., Biol. Reprod. 77(1), 2007
PMID: 17314311
Regulation of mouse oocyte microtubule and organelle dynamics by PADI6 and the cytoplasmic lattices.
Kan R, Yurttas P, Kim B, Jin M, Wo L, Lee B, Gosden R, Coonrod SA., Dev. Biol. 350(2), 2010
PMID: 21147087
Transcriptomic analysis of in vivo and in vitro produced bovine embryos revealed a developmental change in cullin 1 expression during maternal-to-embryonic transition.
Kepkova KV, Vodicka P, Toralova T, Lopatarova M, Cech S, Dolezel R, Havlicek V, Besenfelder U, Kuzmany A, Sirard MA, Laurincik J, Kanka J., Theriogenology 75(9), 2011
PMID: 21411133
Tpt1 activates transcription of oct4 and nanog in transplanted somatic nuclei.
Koziol MJ, Garrett N, Gurdon JB., Curr. Biol. 17(9), 2007
PMID: 17442571
Temporal regulation of embryonic M-phases.
Kubiak JZ, Bazile F, Pascal A, Richard-Parpaillon L, Polanski Z, Ciemerych MA, Chesnel F., Folia Histochem. Cytobiol. 46(1), 2008
PMID: 18296258
Highly efficient vitrification method for cryopreservation of human oocytes.
Kuwayama M, Vajta G, Kato O, Leibo SP., Reprod. Biomed. Online 11(3), 2005
PMID: 16176668
1,2-propanediol and the type of cryopreservation procedure adversely affect mouse oocyte physiology.
Larman MG, Katz-Jaffe MG, Sheehan CB, Gardner DK., Hum. Reprod. 22(1), 2006
PMID: 16905767
Unified mode of centromeric protection by shugoshin in mammalian oocytes and somatic cells.
Lee J, Kitajima TS, Tanno Y, Yoshida K, Morita T, Miyano T, Miyake M, Watanabe Y., Nat. Cell Biol. 10(1), 2007
PMID: 18084284
Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.
Li M, Li S, Yuan J, Wang ZB, Sun SC, Schatten H, Sun QY., PLoS ONE 4(11), 2009
PMID: 19888327
Sequential analysis of global gene expression profiles in immature and in vitro matured bovine oocytes: potential molecular markers of oocyte maturation.
Mamo S, Carter F, Lonergan P, Leal CL, Al Naib A, McGettigan P, Mehta JP, Evans AC, Fair T., BMC Genomics 12(), 2011
PMID: 21410957
Effect of vitrification and thawing on human oocyte ATP concentration.
Manipalviratn S, Tong ZB, Stegmann B, Widra E, Carter J, DeCherney A., Fertil. Steril. 95(5), 2010
PMID: 21071026
Vitrification versus slow freezing of oocytes: effects on morphologic appearance, meiotic spindle configuration, and DNA damage.
Martinez-Burgos M, Herrero L, Megias D, Salvanes R, Montoya MC, Cobo AC, Garcia-Velasco JA., Fertil. Steril. 95(1), 2010
PMID: 20828688
Differential methylation of pluripotency gene promoters in in vitro matured and vitrified, in vivo-matured mouse oocytes.
Milroy C, Liu L, Hammoud S, Hammoud A, Peterson CM, Carrell DT., Fertil. Steril. 95(6), 2011
PMID: 21457962
Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors.
Nagaoka SI, Hodges CA, Albertini DF, Hunt PA., Curr. Biol. 21(8), 2011
PMID: 21497085
Ultrastructural markers of quality in human mature oocytes vitrified using cryoleaf and cryoloop.
Nottola SA, Coticchio G, Sciajno R, Gambardella A, Maione M, Scaravelli G, Bianchi S, Macchiarelli G, Borini A., Reprod. Biomed. Online 19 Suppl 3(), 2009
PMID: 20034420
Messenger RNA expression patterns of histone-associated genes in bovine preimplantation embryos derived from different origins.
Nowak-Imialek M, Wrenzycki C, Herrmann D, Lucas-Hahn A, Lagutina I, Lemme E, Lazzari G, Galli C, Niemann H., Mol. Reprod. Dev. 75(5), 2008
PMID: 18058811
Oocyte cryopreservation as a fertility preservation measure for cancer patients.
Noyes N, Knopman JM, Melzer K, Fino ME, Friedman B, Westphal LM., Reprod. Biomed. Online 23(3), 2010
PMID: 21570353
Novel small GTPase subfamily capable of associating with tubulin is required for chromosome segregation.
Okai T, Araki Y, Tada M, Tateno T, Kontani K, Katada T., J. Cell. Sci. 117(Pt 20), 2004
PMID: 15331635
Stella is a maternal effect gene required for normal early development in mice.
Payer B, Saitou M, Barton SC, Thresher R, Dixon JP, Zahn D, Colledge WH, Carlton MB, Nakano T, Surani MA., Curr. Biol. 13(23), 2003
PMID: 14654002
Proposal for a classification of oocytes and follicles in the mouse ovary.
Pedersen T, Peters H., J. Reprod. Fertil. 17(3), 1968
PMID: 5715685
Proteomic analysis of mouse oocytes reveals 28 candidate factors of the "reprogrammome".
Pfeiffer MJ, Siatkowski M, Paudel Y, Balbach ST, Baeumer N, Crosetto N, Drexler HC, Fuellen G, Boiani M., J. Proteome Res. 10(5), 2011
PMID: 21344949
Positive and negative cis-regulatory elements directing postfertilization maternal mRNA translational control in mouse embryos.
Potireddy S, Midic U, Liang CG, Obradovic Z, Latham KE., Am. J. Physiol., Cell Physiol. 299(4), 2010
PMID: 20573994
Discovery of putative oocyte quality markers by comparative ExacTag proteomics.
Powell MD, Manandhar G, Spate L, Sutovsky M, Zimmerman S, Sachdev SC, Hannink M, Prather RS, Sutovsky P., Proteomics Clin Appl 4(3), 2010
PMID: 21137054
Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.
Ramalho-Santos J, Varum S, Amaral S, Mota PC, Sousa AP, Amaral A., Hum. Reprod. Update 15(5), 2009
PMID: 19414527
Probe-level analysis of expression microarrays characterizes isoform-specific degradation during mouse oocyte maturation.
Salisbury J, Hutchison KW, Wigglesworth K, Eppig JJ, Graber JH., PLoS ONE 4(10), 2009
PMID: 19834616
Method to isolate polyribosomal mRNA from scarce samples such as mammalian oocytes and early embryos.
Scantland S, Grenon JP, Desrochers MH, Sirard MA, Khandjian EW, Robert C., BMC Dev. Biol. 11(), 2011
PMID: 21324132
OMICS in assisted reproduction: possibilities and pitfalls.
Seli E, Robert C, Sirard MA., Mol. Hum. Reprod. 16(8), 2010
PMID: 20538894
Human MATER localization in specific cell domains of oocytes and follicular cells.
Sena P, Riccio M, Marzona L, Nicoli A, Marsella T, Marmiroli S, Bertacchini J, Fano RA, La Sala GB, De Pol A., Reprod. Biomed. Online 18(2), 2009
PMID: 19192343
Clinical grade vitrification of human ovarian tissue: an ultrastructural analysis of follicles and stroma in vitrified tissue.
Sheikhi M, Hultenby K, Niklasson B, Lundqvist M, Hovatta O., Hum. Reprod. 26(3), 2011
PMID: 21217141
Prospective randomized comparison of human oocyte cryopreservation with slow-rate freezing or vitrification.
Smith GD, Serafini PC, Fioravanti J, Yadid I, Coslovsky M, Hassun P, Alegretti JR, Motta EL., Fertil. Steril. 94(6), 2010
PMID: 20171613
Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation.
Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB., Hum. Reprod. Update 16(4), 2010
PMID: 20124287
Knockdown of human N alpha-terminal acetyltransferase complex C leads to p53-dependent apoptosis and aberrant human Arl8b localization.
Starheim KK, Gromyko D, Evjenth R, Ryningen A, Varhaug JE, Lillehaug JR, Arnesen T., Mol. Cell. Biol. 29(13), 2009
PMID: 19398576
Selective degradation of transcripts during meiotic maturation of mouse oocytes.
Su YQ, Sugiura K, Woo Y, Wigglesworth K, Kamdar S, Affourtit J, Eppig JJ., Dev. Biol. 302(1), 2006
PMID: 17022963
Estrogen promotes the development of mouse cumulus cells in coordination with oocyte-derived GDF9 and BMP15.
Sugiura K, Su YQ, Li Q, Wigglesworth K, Matzuk MM, Eppig JJ., Mol. Endocrinol. 24(12), 2010
PMID: 21047911
The pivotal role of glucose metabolism in determining oocyte developmental competence.
Sutton-McDowall ML, Gilchrist RB, Thompson JG., Reproduction 139(4), 2010
PMID: 20089664
Maternal-effect gene Ces5/Ooep/Moep19/Floped is essential for oocyte cytoplasmic lattice formation and embryonic development at the maternal-zygotic stage transition.
Tashiro F, Kanai-Azuma M, Miyazaki S, Kato M, Tanaka T, Toyoda S, Yamato E, Kawakami H, Miyazaki T, Miyazaki J., Genes Cells 15(8), 2010
PMID: 20590823
Cryopreservation and oxidative stress in reproductive cells.
Tatone C, Di Emidio G, Vento M, Ciriminna R, Artini PG., Gynecol. Endocrinol. 26(8), 2010
PMID: 20230330
Mater, a maternal effect gene required for early embryonic development in mice.
Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, Dean J, Nelson LM., Nat. Genet. 26(3), 2000
PMID: 11062459
Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development.
Tong ZB, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, Palumbo C, Bondy CA, Nelson LM., Endocrinology 145(3), 2003
PMID: 14670992
Proteasome modulates mitochondrial function during cellular senescence.
Torres CA, Perez VI., Free Radic. Biol. Med. 44(3), 2007
PMID: 17976388
Influence of vitrification of preantral follicles on spindle, genetic constitution, epigenetic profile and developmental capacity of in vitro grown mouse oocytes
Trapphoff, Hum Reprod (Suppl 1) 25(), 2010
Comparison outcome of fresh and vitrified donor oocytes in an egg-sharing donation program.
Trokoudes KM, Pavlides C, Zhang X., Fertil. Steril. 95(6), 2011
PMID: 21406304
Effects of vitrification on nuclear maturation, ultrastructural changes and gene expression of canine oocytes.
Turathum B, Saikhun K, Sangsuwan P, Kitiyanant Y., Reprod. Biol. Endocrinol. 8(), 2010
PMID: 20565987
Cumulative ongoing pregnancy rate achieved with oocyte vitrification and cleavage stage transfer without embryo selection in a standard infertility program.
Ubaldi F, Anniballo R, Romano S, Baroni E, Albricci L, Colamaria S, Capalbo A, Sapienza F, Vajta G, Rienzi L., Hum. Reprod. 25(5), 2010
PMID: 20185513
Domains of high-polarized and low-polarized mitochondria may occur in mouse and human oocytes and early embryos.
Van Blerkom J, Davis P, Mathwig V, Alexander S., Hum. Reprod. 17(2), 2002
PMID: 11821285
Ovarian follicle bioassay reveals adverse effects of diazepam exposure upon follicle development and oocyte quality.
Van Wemmel K, Gobbers E, Eichenlaub-Ritter U, Smitz J, Cortvrindt R., Reprod. Toxicol. 20(2), 2005
PMID: 15907652
Spindle formation, chromosome segregation and the spindle checkpoint in mammalian oocytes and susceptibility to meiotic error.
Vogt E, Kirsch-Volders M, Parry J, Eichenlaub-Ritter U., Mutat. Res. 651(1-2), 2007
PMID: 18096427
Proteome of mouse oocytes at different developmental stages.
Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S., Proc. Natl. Acad. Sci. U.S.A. 107(41), 2010
PMID: 20876089
Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition.
Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM., Nat. Genet. 33(2), 2003
PMID: 12539046
In vitro grown human ovarian follicles from cancer patients support oocyte growth.
Xu M, Barrett SL, West-Farrell E, Kondapalli LA, Kiesewetter SE, Shea LD, Woodruff TK., Hum. Reprod. 24(10), 2009
PMID: 19597190
Expression of MSY2 in mouse oocytes and preimplantation embryos.
Yu J, Hecht NB, Schultz RM., Biol. Reprod. 65(4), 2001
PMID: 11566752
Transgenic RNAi-mediated reduction of MSY2 in mouse oocytes results in reduced fertility.
Yu J, Deng M, Medvedev S, Yang J, Hecht NB, Schultz RM., Dev. Biol. 268(1), 2004
PMID: 15031116
Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo.
Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA, Coonrod SA., Development 135(15), 2008
PMID: 18599511
Expression analysis of the NLRP gene family suggests a role in human preimplantation development.
Zhang P, Dixon M, Zucchelli M, Hambiliki F, Levkov L, Hovatta O, Kere J., PLoS ONE 3(7), 2008
PMID: 18648497
Proteomic-based identification of maternal proteins in mature mouse oocytes.
Zhang P, Ni X, Guo Y, Guo X, Wang Y, Zhou Z, Huo R, Sha J., BMC Genomics 10(), 2009
PMID: 19646285
Effect of vitrification on mitochondrial distribution and membrane potential in mouse two pronuclear (2-PN) embryos.
Zhao XM, Fu XW, Hou YP, Yan CL, Suo L, Wang YP, Zhu HB, Dinnyes A, Zhu SE., Mol. Reprod. Dev. 76(11), 2009
PMID: 19551710
Oct-4 regulates the expression of Stella and Foxj2 at the Nanog locus: implications for the developmental competence of mouse oocytes.
Zuccotti M, Merico V, Sacchi L, Bellone M, Brink TC, Stefanelli M, Redi CA, Bellazzi R, Adjaye J, Garagna S., Hum. Reprod. 24(9), 2009
PMID: 19477878

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22258663
PubMed | Europe PMC

Suchen in

Google Scholar