Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells

Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B (2012)
Anatomy Research International 2012: 1-9.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
Meissner corpuscles and Merkel cell neurite complexes are highly specialized mechanoreceptors present in the hairy and glabrous skin, as well as in different types of mucosa. Several reports suggest that after injury, such as after nerve crush, freeze injury, or dissection of the nerve, they are able to regenerate, particularly including reinnervation and repopulation of the mechanoreceptors by Schwann cells. However, little is known about mammalian cells responsible for these regenerative processes. Here we review cellular origin of this plasticity in the light of newly described adult neural crest-derived stem cell populations. We also discuss further potential multipotent stem cell populations with the ability to regenerate disrupted innervation and to functionally recover the mechanoreceptors. These capabilities are discussed as in context to cellularly reprogrammed Schwann cells and tissue resident adult mesenchymal stem cells.
Erscheinungsjahr
2012
Zeitschriftentitel
Anatomy Research International
Band
2012
Seite(n)
1-9
ISSN
2090-2743
eISSN
2090-2751
Finanzierungs-Informationen
Open-Access-Publikationskosten wurden durch die Deutsche Forschungsgemeinschaft und die Universität Bielefeld gefördert.
Page URI
https://pub.uni-bielefeld.de/record/2490850

Zitieren

Widera D, Hauser S, Kaltschmidt C, Kaltschmidt B. Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. Anatomy Research International. 2012;2012:1-9.
Widera, D., Hauser, S., Kaltschmidt, C., & Kaltschmidt, B. (2012). Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. Anatomy Research International, 2012, 1-9. doi:10.1155/2012/837626
Widera, D., Hauser, S., Kaltschmidt, C., and Kaltschmidt, B. (2012). Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. Anatomy Research International 2012, 1-9.
Widera, D., et al., 2012. Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. Anatomy Research International, 2012, p 1-9.
D. Widera, et al., “Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells”, Anatomy Research International, vol. 2012, 2012, pp. 1-9.
Widera, D., Hauser, S., Kaltschmidt, C., Kaltschmidt, B.: Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells. Anatomy Research International. 2012, 1-9 (2012).
Widera, Darius, Hauser, Stefan, Kaltschmidt, Christian, and Kaltschmidt, Barbara. “Origin and regenerative potential of vertebrate mechanoreceptor-associated stem cells”. Anatomy Research International 2012 (2012): 1-9.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-25T06:41:58Z
MD5 Prüfsumme
f048d79aff241bbcce35603d7bdbb6ae

2 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Isolation and Characterization of Neural Crest-Derived Stem Cells From Adult Ovine Palatal Tissue.
Zeuner MT, Didenko NN, Humphries D, Stergiadis S, Morash TM, Patel K, Grimm WD, Widera D., Front Cell Dev Biol 6(), 2018
PMID: 29696142

74 References

Daten bereitgestellt von Europe PubMed Central.


AUTHOR UNKNOWN, 1852

AUTHOR UNKNOWN, Journal of Neuroscience 21(18), 2001
Adult palatum as a novel source of neural crest-related stem cells.
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B., Stem Cells 27(8), 2009
PMID: 19544446

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, Anatomical Record 271(1), 2003
Effacement and regeneration of tactile lamellar corpuscles of rat after postnatal nerve crush.
Zelena J, Jirmanova I, Nitatori T, Ide C., Neuroscience 39(2), 1990
PMID: 2087271
Regeneration of tactile lamellar corpuscles of the rat after postnatal freeze injury.
Jirmanova I, Dubovy P, Zelena J., Anat. Embryol. 195(4), 1997
PMID: 9108203
Nerve supply and nerve endings in Meissner's corpuscles.
CAUNA N., Am. J. Anat. 99(2), 1956
PMID: 13372495
The structure and function of cutaneous sensory receptors.
Munger BL, Ide C., Arch. Histol. Cytol. 51(1), 1988
PMID: 3137944

AUTHOR UNKNOWN, Journal of Histochemistry and Cytochemistry 48(2), 2000

AUTHOR UNKNOWN, Monthly International Journal of Anatomy and Physiology 9(), 1892
The Meissner and Pacinian sensory corpuscles revisited new data from the last decade.
Vega JA, Garcia-Suarez O, Montano JA, Pardo B, Cobo JM., Microsc. Res. Tech. 72(4), 2009
PMID: 19012318
Merkel cells are essential for light-touch responses.
Maricich SM, Wellnitz SA, Nelson AM, Lesniak DR, Gerling GJ, Lumpkin EA, Zoghbi HY., Science 324(5934), 2009
PMID: 19541997

AUTHOR UNKNOWN, Bratislavské Lekárske Listy 112(2), 2011
Current considerations about Merkel cells.
Lucarz A, Brand G., Eur. J. Cell Biol. 86(5), 2007
PMID: 17337089
Myelin basic protein-positive nerve fibres in human Meissner corpuscles.
Garcia-Suarez O, Montano JA, Esteban I, Gonzalez-Martinez T, Alvarez-Abad C, Lopez-Arranz E, Cobo J, Vega JA., J. Anat. 214(6), 2009
PMID: 19538632
Immunohistochemistry of human cutaneous Meissner and pacinian corpuscles.
Vega JA, Haro JJ, Del Valle ME., Microsc. Res. Tech. 34(4), 1996
PMID: 8807618
Schwann cells can be reprogrammed to multipotency by culture.
Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 20(12), 2011
PMID: 21466279
Mechanosensory neurons, cutaneous mechanoreceptors, and putative mechanoproteins.
Del Valle ME, Cobo T, Cobo JL, Vega JA., Microsc. Res. Tech. 75(8), 2012
PMID: 22461425
Expression of epidermal growth factor receptor (EGFr) immunoreactivity in human cutaneous nerves and sensory corpuscles.
Vega JA, Vazquez E, Naves FJ, Calzada B, del Valle ME, Represa JJ., Anat. Rec. 240(1), 1994
PMID: 7810909
The lamellar cells in human Meissner corpuscles express TrkB.
Calavia MG, Feito J, Lopez-Iglesias L, de Carlos F, Garcia-Suarez O, Perez-Pinera P, Cobo J, Vega JA., Neurosci. Lett. 468(2), 2009
PMID: 19879330

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, Journal of Investigative Dermatology 106(2), 1996

AUTHOR UNKNOWN, Journal of Investigative Dermatology 83(6), 1984
Evidence for distinct populations of human Merkel cells.
Eispert AC, Fuchs F, Brandner JM, Houdek P, Wladykowski E, Moll I., Histochem. Cell Biol. 132(1), 2009
PMID: 19319559
Cutaneous innervation in man visualized with protein gene product 9.5 (PGP 9.5) antibodies.
Dalsgaard CJ, Rydh M, Haegerstrand A., Histochemistry 92(5), 1989
PMID: 2531128

AUTHOR UNKNOWN, Virchows Archiv 426(3), 1995
Specific subtypes of cutaneous mechanoreceptors require neurotrophin-3 following peripheral target innervation.
Airaksinen MS, Koltzenburg M, Lewin GR, Masu Y, Helbig C, Wolf E, Brem G, Toyka KV, Thoenen H, Meyer M., Neuron 16(2), 1996
PMID: 8789944
Expression of the embryonic stem cell transcription factor SOX2 in human skin: relevance to melanocyte and merkel cell biology.
Laga AC, Lai CY, Zhan Q, Huang SJ, Velazquez EF, Yang Q, Hsu MY, Murphy GF., Am. J. Pathol. 176(2), 2009
PMID: 20042675
Developmental origin of avian Merkel cells.
Grim M, Halata Z., Anat. Embryol. 202(5), 2000
PMID: 11089931
Neural crest origin of mammalian Merkel cells.
Szeder V, Grim M, Halata Z, Sieber-Blum M., Dev. Biol. 253(2), 2003
PMID: 12645929
Mammalian Merkel cells are descended from the epidermal lineage.
Morrison KM, Miesegaes GR, Lumpkin EA, Maricich SM., Dev. Biol. 336(1), 2009
PMID: 19782676

AUTHOR UNKNOWN, American Journal of Anatomy 163(1), 1982
Basal laminae and Meissner corpuscle regeneration.
Ide C., Brain Res. 384(2), 1986
PMID: 3779383
Degeneration and regeneration of cutaneous sensory nerve formations.
Dubovy P, Aldskogius H., Microsc. Res. Tech. 34(4), 1996
PMID: 8807619
Merkel cells and permanent disesthesia in the oral mucosa after soft tissue grafts.
Aimetti M, Romano F, Cricenti L, Perotto S, Gotti S, Panzica G, Graziano A., J. Cell. Physiol. 224(1), 2010
PMID: 20333649
Isolation of multipotent neural crest-derived stem cells from the adult mouse cornea.
Yoshida S, Shimmura S, Nagoshi N, Fukuda K, Matsuzaki Y, Okano H, Tsubota K., Stem Cells 24(12), 2006
PMID: 16888282
The adult hair follicle: cradle for pluripotent neural crest stem cells.
Sieber-Blum M, Grim M., Birth Defects Res. C Embryo Today 72(2), 2004
PMID: 15269890
Neurosphere generation from dental pulp of adult rat incisor.
Sasaki R, Aoki S, Yamato M, Uchiyama H, Wada K, Okano T, Ogiuchi H., Eur. J. Neurosci. 27(3), 2008
PMID: 18279307
Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad.
Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E, Morikawa S, Okada Y, Mabuchi Y, Katoh H, Okada S, Fukuda K, Suda T, Matsuzaki Y, Toyama Y, Okano H., Cell Stem Cell 2(4), 2008
PMID: 18397758
Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system.
Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I., Biochem. Biophys. Res. Commun. 357(4), 2007
PMID: 17459343
Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery.
Widera D, Grimm WD, Moebius JM, Mikenberg I, Piechaczek C, Gassmann G, Wolff NA, Thevenod F, Kaltschmidt C, Kaltschmidt B., Stem Cells Dev. 16(3), 2007
PMID: 17610375
Neurospheres from human adipose tissue transplanted into cultured mouse embryos can contribute to craniofacial morphogenesis: a preliminary report.
Nagase T, Matsumoto D, Nagase M, Yoshimura K, Shigeura T, Inoue M, Hasegawa M, Yamagishi M, Machida M., J Craniofac Surg 18(1), 2007
PMID: 17251835

AUTHOR UNKNOWN, Stem Cells and Development 21(5), 2011
Adult palatum as a novel source of neural crest-related stem cells.
Widera D, Zander C, Heidbreder M, Kasperek Y, Noll T, Seitz O, Saldamli B, Sudhoff H, Sader R, Kaltschmidt C, Kaltschmidt B., Stem Cells 27(8), 2009
PMID: 19544446

AUTHOR UNKNOWN, Journal of Comparative Neurology 295(1), 1990
Nestin is required for the proper self-renewal of neural stem cells.
Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, Shao Y, Ma BF, Lee JH, Ha KS, Walton N, Lahn BT., Stem Cells 28(12), 2010
PMID: 20963821
The origin and development of glial cells in peripheral nerves.
Jessen KR, Mirsky R., Nat. Rev. Neurosci. 6(9), 2005
PMID: 16136171
Reversal of developmental restrictions in neural crest lineages: transition from Schwann cells to glial-melanocytic precursors in vitro.
Dupin E, Real C, Glavieux-Pardanaud C, Vaigot P, Le Douarin NM., Proc. Natl. Acad. Sci. U.S.A. 100(9), 2003
PMID: 12702775
The instability of the neural crest phenotypes: Schwann cells can differentiate into myofibroblasts.
Real C, Glavieux-Pardanaud C, Vaigot P, Le-Douarin N, Dupin E., Int. J. Dev. Biol. 49(2-3), 2005
PMID: 15906228

AUTHOR UNKNOWN, Journal of Neuroscience 22(22), 2002
Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin.
Adameyko I, Lallemend F, Aquino JB, Pereira JA, Topilko P, Muller T, Fritz N, Beljajeva A, Mochii M, Liste I, Usoskin D, Suter U, Birchmeier C, Ernfors P., Cell 139(2), 2009
PMID: 19837037

AUTHOR UNKNOWN, European Journal of Neuroscience 5(9), 1993
Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing.
Nagoshi N, Shibata S, Hamanoue M, Mabuchi Y, Matsuzaki Y, Toyama Y, Nakamura M, Okano H., Glia 59(5), 2011
PMID: 21351159
Mesenchymal stem cells: revisiting history, concepts, and assays.
Bianco P, Robey PG, Simmons PJ., Cell Stem Cell 2(4), 2008
PMID: 18397751
Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, time-lapse video and microarray.
Bertani N, Malatesta P, Volpi G, Sonego P, Perris R., J. Cell. Sci. 118(Pt 17), 2005
PMID: 16091422
Neural differentiation potential of human bone marrow-derived mesenchymal stromal cells: misleading marker gene expression.
Montzka K, Lassonczyk N, Tschoke B, Neuss S, Fuhrmann T, Franzen R, Smeets R, Brook GA, Woltje M., BMC Neurosci 10(), 2009
PMID: 19257891
Schwann-like cells can be induction from human nestin-positive amniotic fluid mesenchymal stem cells.
Jiang TM, Yang ZJ, Kong CZ, Zhang HT., In Vitro Cell. Dev. Biol. Anim. 46(9), 2010
PMID: 20652439
Small molecule induction of neural-like cells from bone marrow-mesenchymal stem cells.
Wang Y, He W, Bian H, Liu C, Li S., J. Cell. Biochem. 113(5), 2012
PMID: 22173988
Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts.
Covas DT, Panepucci RA, Fontes AM, Silva WA Jr, Orellana MD, Freitas MC, Neder L, Santos AR, Peres LC, Jamur MC, Zago MA., Exp. Hematol. 36(5), 2008
PMID: 18295964

AUTHOR UNKNOWN, 0
Tumour-associated fibroblasts and mesenchymal stem cells: more similarities than differences.
Paunescu V, Bojin FM, Tatu CA, Gavriliuc OI, Rosca A, Gruia AT, Tanasie G, Bunu C, Crisnic D, Gherghiceanu M, Tatu FR, Tatu CS, Vermesan S., J. Cell. Mol. Med. 15(3), 2011
PMID: 20184663
Fibroblasts share mesenchymal phenotypes with stem cells, but lack their differentiation and colony-forming potential.
Alt E, Yan Y, Gehmert S, Song YH, Altman A, Gehmert S, Vykoukal D, Bai X., Biol. Cell 103(4), 2011
PMID: 21332447
Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement.
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop Dj, Horwitz E., Cytotherapy 8(4), 2006
PMID: 16923606
Neuroepithelial cells supply an initial transient wave of MSC differentiation.
Takashima Y, Era T, Nakao K, Kondo S, Kasuga M, Smith AG, Nishikawa S., Cell 129(7), 2007
PMID: 17604725
Material in PUB:
Dissertation, die diesen PUB Eintrag enthält

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 23082250
PubMed | Europe PMC

Suchen in

Google Scholar