Coding of lateral line stimuli in the goldfish midbrain in still and running water
Engelmann J, Bleckmann H (2004)
Zoology (Jena, Germany) 107(2): 135-151.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Engelmann, Jacob;
Bleckmann, Horst
Abstract / Bemerkung
We investigated in goldfish, Carassius auratus, how running water affects the responses of toral lateral line units to a stationary vibrating sphere or to a non-vibrating sphere that moves along the side of the fish. Experiments were conducted in the presence of running water (hydrodynamic noise) to further explore the sensory capabilities of the lateral line with special focus on the morphological sub-modalities. Previous recordings from lateral line nerve fibres in various fish species and the first nucleus of the ascending lateral line pathway in goldfish revealed flow-sensitive and flow-insensitive units. These physiological differences represent, at least in part, the differences in morphology of the lateral line, superficial and canal neuromasts. Following up on these findings we recorded flow-sensitive and flow-insensitive units in the Torus semicircularis of goldfish. In still water, both types of units responded to a vibrating or moving sphere. In running water, neural responses were weaker when the sphere was moved with the flow but were comparable or slightly stronger when the sphere was moved against the flow. In running water, responses of flow-sensitive fibres to the vibrating sphere were masked. In contrast, the responses of units insensitive to water flow were not masked. Our data confirm previous findings but also indicate differences when compared to previous reports. We discuss these differences with respect to lateral line morphology, sub-modalities and convergence of different channels of information at higher brain stations.
Erscheinungsjahr
2004
Zeitschriftentitel
Zoology (Jena, Germany)
Band
107
Ausgabe
2
Seite(n)
135-151
ISSN
0944-2006
Page URI
https://pub.uni-bielefeld.de/record/2488858
Zitieren
Engelmann J, Bleckmann H. Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena, Germany). 2004;107(2):135-151.
Engelmann, J., & Bleckmann, H. (2004). Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena, Germany), 107(2), 135-151. doi:10.1016/j.zool.2004.04.001
Engelmann, Jacob, and Bleckmann, Horst. 2004. “Coding of lateral line stimuli in the goldfish midbrain in still and running water”. Zoology (Jena, Germany) 107 (2): 135-151.
Engelmann, J., and Bleckmann, H. (2004). Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena, Germany) 107, 135-151.
Engelmann, J., & Bleckmann, H., 2004. Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena, Germany), 107(2), p 135-151.
J. Engelmann and H. Bleckmann, “Coding of lateral line stimuli in the goldfish midbrain in still and running water”, Zoology (Jena, Germany), vol. 107, 2004, pp. 135-151.
Engelmann, J., Bleckmann, H.: Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology (Jena, Germany). 107, 135-151 (2004).
Engelmann, Jacob, and Bleckmann, Horst. “Coding of lateral line stimuli in the goldfish midbrain in still and running water”. Zoology (Jena, Germany) 107.2 (2004): 135-151.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
7 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
Winkelnkemper J, Kranz S, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(2), 2018
PMID: 29075852
Winkelnkemper J, Kranz S, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(2), 2018
PMID: 29075852
Sensing External and Self-Motion with Hair Cells: A Comparison of the Lateral Line and Vestibular Systems from a Developmental and Evolutionary Perspective.
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H., Brain Behav Evol 90(2), 2017
PMID: 28988233
Chagnaud BP, Engelmann J, Fritzsch B, Glover JC, Straka H., Brain Behav Evol 90(2), 2017
PMID: 28988233
The lateral line system is not necessary for rheotaxis in the Mexican blind cavefish (Astyanax fasciatus).
Van Trump WJ, McHenry MJ., Integr Comp Biol 53(5), 2013
PMID: 23722083
Van Trump WJ, McHenry MJ., Integr Comp Biol 53(5), 2013
PMID: 23722083
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere.
Meyer G, Klein A, Mogdans J, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22669431
Meyer G, Klein A, Mogdans J, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 198(9), 2012
PMID: 22669431
Two-dimensional receptive fields of midbrain lateral line units in the goldfish, Carassius auratus.
Voges K, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21505876
Voges K, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(8), 2011
PMID: 21505876
39 References
Daten bereitgestellt von Europe PubMed Central.
Function of the free neuromasts of marin teleast larvae
Blaxter, 1989
Blaxter, 1989
Reception of hydrodynamic stimuli in aquatic and semiaquatic animals
Bleckmann, 1994
Bleckmann, 1994
The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects
Bleckmann, J. Comp. Physiol. A 172(), 1993
Bleckmann, J. Comp. Physiol. A 172(), 1993
The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans.
Bleckmann H, Breithaupt T, Blickhan R, Tautz J., J. Comp. Physiol. A 168(6), 1991
PMID: 1920167
Bleckmann H, Breithaupt T, Blickhan R, Tautz J., J. Comp. Physiol. A 168(6), 1991
PMID: 1920167
Dipole source localization by mottled sculpin. III. Orientation after site-specific, unilateral denervation of the lateral line system.
Conley RA, Coombs S., J. Comp. Physiol. A 183(3), 1998
PMID: 9763703
Conley RA, Coombs S., J. Comp. Physiol. A 183(3), 1998
PMID: 9763703
Fibers innervating different parts of the lateral line system of an Antarctic notothenioid, Trematomus bernacchii, have similar frequency responses, despite large variation in the peripheral morphology.
Coombs S, Montgomery J., Brain Behav. Evol. 40(5), 1992
PMID: 1450897
Coombs S, Montgomery J., Brain Behav. Evol. 40(5), 1992
PMID: 1450897
The enigmatic lateral line
Coombs, 1998
Coombs, 1998
Diversity of lateral line systems
Coombs, 1988
Coombs, 1988
Modeling and measuring lateral line excitation patterns to changing dipole source locations.
Coombs S, Hastings M, Finneran J., J. Comp. Physiol. A 178(3), 1996
PMID: 8583423
Coombs S, Hastings M, Finneran J., J. Comp. Physiol. A 178(3), 1996
PMID: 8583423
The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts.
Coombs S, Braun CB, Donovan B., J. Exp. Biol. 204(Pt 2), 2001
PMID: 11136619
Coombs S, Braun CB, Donovan B., J. Exp. Biol. 204(Pt 2), 2001
PMID: 11136619
Hydrodynamic stimuli and the fish lateral line.
Engelmann J, Hanke W, Mogdans J, Bleckmann H., Nature 408(6808), 2000
PMID: 11081502
Engelmann J, Hanke W, Mogdans J, Bleckmann H., Nature 408(6808), 2000
PMID: 11081502
Lateral line reception in still- and running water.
Engelmann J, Hanke W, Bleckmann H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(7), 2002
PMID: 12209340
Engelmann J, Hanke W, Bleckmann H., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 188(7), 2002
PMID: 12209340
Effects of running water on lateral line responses to moving objects.
Engelmann J, Krother S, Bleckmann H, Mogdans J., Brain Behav. Evol. 61(4), 2003
PMID: 12784057
Engelmann J, Krother S, Bleckmann H, Mogdans J., Brain Behav. Evol. 61(4), 2003
PMID: 12784057
A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors.
FLOCK A, WERSALL J., J. Cell Biol. 15(), 1962
PMID: 13945569
FLOCK A, WERSALL J., J. Cell Biol. 15(), 1962
PMID: 13945569
Mathematical description of the stimulus to the lateral line system of fish, derived from a three-dimensional flow field analysis. I. The case of moving in open water and of gliding towards a plane surface
Hassan, Biol. Cybern. 66(), 1992
Hassan, Biol. Cybern. 66(), 1992
The neural basis of behavior: a neuroethological view.
Heiligenberg W., Annu. Rev. Neurosci. 14(), 1991
PMID: 2031571
Heiligenberg W., Annu. Rev. Neurosci. 14(), 1991
PMID: 2031571
Functional evolution of lateral line and inner ear sensory systems
Kalmijn, 1989
Kalmijn, 1989
Velocity- and acceleration-sensitive units in the trunk lateral line of the trout.
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Kroese AB, Schellart NA., J. Neurophysiol. 68(6), 1992
PMID: 1491267
Brainstem lateral line responses to sinusoidal wave stimuli in still and running water.
Krother S, Mogdans J, Bleckmann H., J. Exp. Biol. 205(Pt 10), 2002
PMID: 11976358
Krother S, Mogdans J, Bleckmann H., J. Exp. Biol. 205(Pt 10), 2002
PMID: 11976358
The Karman gait: novel body kinematics of rainbow trout swimming in a vortex street.
Liao JC, Beal DN, Lauder GV, Triantafyllou MS., J. Exp. Biol. 206(Pt 6), 2003
PMID: 12582148
Liao JC, Beal DN, Lauder GV, Triantafyllou MS., J. Exp. Biol. 206(Pt 6), 2003
PMID: 12582148
Responses of the goldfish trunk lateral line to moving objects
Mogdans, J. Comp. Physiol. A 182(), 1998
Mogdans, J. Comp. Physiol. A 182(), 1998
Responses of medullary lateral line units in the goldfish, Carassius auratus, to sinusoidal and complex wave stimuli
Mogdans, Zoology 102(), 1999
Mogdans, Zoology 102(), 1999
Hindbrain sensory processing in lateral line, electrosensory and auditory systems
Montgomery, Audit. Neurosci. 1(), 1995
Montgomery, Audit. Neurosci. 1(), 1995
The lateral line can mediate rheotaxis in fish
Montgomery, Nature 389(), 1997
Montgomery, Nature 389(), 1997
Sensory integration in the hydrodynamic world of rainbow trout.
Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N., Proc. Biol. Sci. 270 Suppl 2(), 2003
PMID: 14667381
Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N., Proc. Biol. Sci. 270 Suppl 2(), 2003
PMID: 14667381
Indications for feature detection with the lateral line organ in fish
Müller, Comp. Biochem. Physiol. A 114(), 1996
Müller, Comp. Biochem. Physiol. A 114(), 1996
Functional organization of the lateral line periphery
Münz, 1989
Münz, 1989
Neural recordings from the lateral line in free-swimming toadfish, Opsanus tau.
Palmer LM, Giuffrida BA, Mensinger AF., Biol. Bull. 205(2), 2003
PMID: 14583537
Palmer LM, Giuffrida BA, Mensinger AF., Biol. Bull. 205(2), 2003
PMID: 14583537
The sensory basis of fish schools
Partridge, J. Comp. Physiol. A 135(), 1980
Partridge, J. Comp. Physiol. A 135(), 1980
A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus.
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378
Plachta DT, Hanke W, Bleckmann H., J. Exp. Biol. 206(Pt 19), 2003
PMID: 12939378
Peripheral distribution and central projections of the lateral-line nerves in goldfish, Carassius auratus.
Puzdrowski RL., Brain Behav. Evol. 34(2), 1989
PMID: 2819411
Puzdrowski RL., Brain Behav. Evol. 34(2), 1989
PMID: 2819411
Vibrational communication during spawning behavior in the hime salmon (landlocked red salmon, Oncorhynchus nerka)
Satou, J. Comp. Physiol. A 168(), 1991
Satou, J. Comp. Physiol. A 168(), 1991
The effect of metacaine (MS-222) on the activity of the efferent and afferent nerves in the teleost lateral-line system.
Spath M, Schweickert W., Naunyn Schmiedebergs Arch. Pharmacol. 297(1), 1977
PMID: 193048
Spath M, Schweickert W., Naunyn Schmiedebergs Arch. Pharmacol. 297(1), 1977
PMID: 193048
Responses of anterior lateral line afferent neurones to water flow.
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Voigt R, Carton AG, Montgomery JC., J. Exp. Biol. 203(Pt 16), 2000
PMID: 10903164
Influence of temporal cues on acoustic motion-direction sensitivity of auditory neurons in the owl.
Wagner H, Takahashi T., J. Neurophysiol. 68(6), 1992
PMID: 1491257
Wagner H, Takahashi T., J. Neurophysiol. 68(6), 1992
PMID: 1491257
Frequency response properties of lateral line superficial neuromasts in a vocal fish, with evidence for acoustic sensitivity.
Weeg MS, Bass AH., J. Neurophysiol. 88(3), 2002
PMID: 12205146
Weeg MS, Bass AH., J. Neurophysiol. 88(3), 2002
PMID: 12205146
Discrimination between stationary objects by the blind cave fish Anoptichthys jordani
Weissert, J Comp. Physiol. A 143(), 1981
Weissert, J Comp. Physiol. A 143(), 1981
The responses of midbrain lateral line units of the goldfish, Carassius auratus, to objects moving in the water
Wojtenek, Zoology 101(), 1998
Wojtenek, Zoology 101(), 1998
The central nervous system
Wullimann, 1998
Wullimann, 1998
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 16351934
PubMed | Europe PMC
Suchen in