Lateral line reception in still- and running water

Engelmann J, Hanke W, Bleckmann H (2002)
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 188(7): 513-526.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ;
Abstract / Bemerkung
The lateral line of fish is composed of neuromasts used to detect water motions. Neuromasts occur as superficial neuromasts on the skin and as canal neuromasts in subepidermal canals. Fibres of the lateral line nerves innervate both. There have been extensive studies on the responses of lateral line nerve fibres to dipole stimuli applied in still water. However, despite the fact that many fish live in rivers and/or swim constantly, responses of lateral line nerve fibres to dipole stimuli presented in running water have never been recorded. We investigated how the peripheral lateral line of still water fish ( Carassius auratus) and riverine fish ( Oncorhynchus mykiss) responds to minute sinusoidal water motions while exposed to unidirectional water flow. Both goldfish and trout have two types of posterior lateral line nerve fibres: Type I fibres, which most likely innervate superficial neuromasts, were stimulated by running water (10 cm s(-1)). The responses of type I fibres to water motions generated by a vibrating sphere were masked if the fish was exposed to running water. Type II fibres, which most likely innervate canal neuromasts, were not stimulated by running water. Consequently, responses of type II fibres to a vibrating sphere were not masked under flow conditions.
Erscheinungsjahr
Zeitschriftentitel
Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology
Band
188
Ausgabe
7
Seite(n)
513-526
ISSN
eISSN
PUB-ID

Zitieren

Engelmann J, Hanke W, Bleckmann H. Lateral line reception in still- and running water. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 2002;188(7):513-526.
Engelmann, J., Hanke, W., & Bleckmann, H. (2002). Lateral line reception in still- and running water. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 188(7), 513-526. doi:10.1007/s00359-002-0326-6
Engelmann, J., Hanke, W., and Bleckmann, H. (2002). Lateral line reception in still- and running water. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 188, 513-526.
Engelmann, J., Hanke, W., & Bleckmann, H., 2002. Lateral line reception in still- and running water. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, 188(7), p 513-526.
J. Engelmann, W. Hanke, and H. Bleckmann, “Lateral line reception in still- and running water”, Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, vol. 188, 2002, pp. 513-526.
Engelmann, J., Hanke, W., Bleckmann, H.: Lateral line reception in still- and running water. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology. 188, 513-526 (2002).
Engelmann, J, Hanke, W, and Bleckmann, H. “Lateral line reception in still- and running water”. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology 188.7 (2002): 513-526.

33 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Responses of medullary lateral line units of the rudd, Scardinius erythrophthalmus, and the nase, Chondrostoma nasus, to vortex streets.
Winkelnkemper J, Kranz S, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204(2), 2018
PMID: 29075852
Sensory trait variation contributes to biased dispersal of threespine stickleback in flowing water.
Jiang Y, Peichel CL, Torrance L, Rizvi Z, Thompson S, Palivela VV, Pham H, Ling F, Bolnick DI., J Evol Biol 30(4), 2017
PMID: 28029723
Functional diversity of the lateral line system among populations of a native Australian freshwater fish.
Spiller L, Grierson PF, Davies PM, Hemmi J, Collin SP, Kelley JL., J Exp Biol 220(pt 12), 2017
PMID: 28396354
Adaptive responses of peripheral lateral line nerve fibres to sinusoidal wave stimuli.
Mogdans J, Müller C, Frings M, Raap F., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 203(5), 2017
PMID: 28405761
A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.
Liu G, Wang A, Wang X, Liu P., Appl Bionics Biomech 2016(), 2016
PMID: 28115825
Medullary lateral line units of rudd, Scardinius erythrophthalmus, are sensitive to Kármán vortex streets.
Klein A, Winkelnkemper J, Dylda E, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 201(7), 2015
PMID: 26018072
The lateral line receptor array of cyprinids from different habitats.
Schmitz A, Bleckmann H, Mogdans J., J Morphol 275(4), 2014
PMID: 24142903
The effects of flow on schooling Devario aequipinnatus: school structure, startle response and information transmission.
Chicoli A, Butail S, Lun Y, Bak-Coleman J, Coombs S, Paley DA., J Fish Biol 84(5), 2014
PMID: 24773538
Control of self-motion in dynamic fluids: fish do it differently from bees.
Scholtyssek C, Dacke M, Kröger R, Baird E., Biol Lett 10(5), 2014
PMID: 24872463
Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae).
Hanke W, Wieskotten S, Marshall C, Dehnhardt G., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(6), 2013
PMID: 23180048
The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae).
Klein A, Münz H, Bleckmann H., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 199(9), 2013
PMID: 23824224
Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral line of goldfish, Carassius auratus.
Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J., J Neurophysiol 107(10), 2012
PMID: 22378175
Organization of the gymnotiform fish pallium in relation to learning and memory: II. Extrinsic connections.
Giassi AC, Duarte TT, Ellis W, Maler L., J Comp Neurol 520(15), 2012
PMID: 22430442
Lateral line system of fish.
Bleckmann H, Zelick R., Integr Zool 4(1), 2009
PMID: 21392273
Wake tracking and the detection of vortex rings by the canal lateral line of fish.
Franosch JM, Hagedorn HJ, Goulet J, Engelmann J, van Hemmen JL., Phys Rev Lett 103(7), 2009
PMID: 19792690
Lateral line nerve fibers do not code bulk water flow direction in turbulent flow.
Chagnaud BP, Bleckmann H, Hofmann MH., Zoology (Jena) 111(3), 2008
PMID: 18329260
Zebrafish in the wild: a review of natural history and new notes from the field.
Engeszer RE, Patterson LB, Rao AA, Parichy DM., Zebrafish 4(1), 2007
PMID: 18041940
Micromachined biomimetic artificial haircell sensors.
Liu C., Bioinspir Biomim 2(4), 2007
PMID: 18037725
3-D-orientation with the octavolateralis system.
Bleckmann H., J Physiol Paris 98(1-3), 2004
PMID: 15477022
Coding of lateral line stimuli in the goldfish midbrain in still and running water.
Engelmann J, Bleckmann H., Zoology (Jena) 107(2), 2004
PMID: 16351934
Effects of running water on brainstem lateral line responses in trout, Oncorhynchus mykiss, to sinusoidal wave stimuli.
Kröther S, Bleckmann H, Mogdans J., J Comp Physiol A Neuroethol Sens Neural Behav Physiol 190(6), 2004
PMID: 14997333

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 12209340
PubMed | Europe PMC

Suchen in

Google Scholar