Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron

Geurten BRH, Kern R, Egelhaaf M (2012)
Frontiers in Integrative Neuroscience 6.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor/in
Abstract / Bemerkung
Hoverflies and blowflies have distinctly different flight styles. Yet, both species have been shown to structure their flight behavior in a way that facilitates extraction of 3D information from the image flow on the retina (optic flow). Neuronal candidates to analyze the optic flow are the tangential cells in the third optical ganglion – the lobula complex. These neurons are directionally selective and integrate the optic flow over large parts of the visual field. Homolog tangential cells in hoverflies and blowflies have a similar morphology. Because blowflies and hoverflies have similar neuronal layout but distinctly different flight behaviors, they are an ideal substrate to pinpoint potential neuronal adaptations to the different flight styles. In this article we describe the relationship between locomotion behavior and motion vision on three different levels: (1) We compare the different flight styles based on the categorization of flight behavior into prototypical movements. (2) We measure the species-specific dynamics of the optic flow under naturalistic flight conditions. We found the translational optic flow of both species to be very different. (3) We describe possible adaptations of a homolog motion-sensitive neuron. We stimulate this cell in blowflies (Calliphora) and hoverflies (Eristalis) with naturalistic optic flow generated by both species during free flight. The characterized hoverfly tangential cell responds faster to transient changes in the optic flow than its blowfly homolog. It is discussed whether and how the different dynamical response properties aid optic flow analysis.
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Integrative Neuroscience
Band
6
ISSN
1662-5145
eISSN
1662-5145
Page URI
https://pub.uni-bielefeld.de/record/2487941

Zitieren

Geurten BRH, Kern R, Egelhaaf M. Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron. Frontiers in Integrative Neuroscience. 2012;6.
Geurten, B. R. H., Kern, R., & Egelhaaf, M. (2012). Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron. Frontiers in Integrative Neuroscience, 6. doi:10.3389/fnint.2012.00011
Geurten, B. R. H., Kern, R., and Egelhaaf, M. (2012). Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron. Frontiers in Integrative Neuroscience 6.
Geurten, B.R.H., Kern, R., & Egelhaaf, M., 2012. Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron. Frontiers in Integrative Neuroscience, 6.
B.R.H. Geurten, R. Kern, and M. Egelhaaf, “Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron”, Frontiers in Integrative Neuroscience, vol. 6, 2012.
Geurten, B.R.H., Kern, R., Egelhaaf, M.: Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron. Frontiers in Integrative Neuroscience. 6, (2012).
Geurten, Bart R. H., Kern, Roland, and Egelhaaf, Martin. “Species-Specific Flight Styles of Flies are Reflected in the Response Dynamics of a Homolog Motion-Sensitive Neuron”. Frontiers in Integrative Neuroscience 6 (2012).
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:01Z
MD5 Prüfsumme
c65f9510dd1e452e17ab1ec2386c6999

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Quellen

PMID: 22485089
PubMed | Europe PMC

Suchen in

Google Scholar