Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing
Hennig P, Egelhaaf M (2012)
Frontiers in Neural Circuits 6: 14.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Einrichtung
Abstract / Bemerkung
We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly's visual system. The model circuit successfully reproduces the FD1 cell's most conspicuous property: its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly's saccadic flight and gaze strategy: the FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects-irrespective of the features by which the objects are defined-by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Neural Circuits
Band
6
Seite(n)
14
ISSN
1662-5110
eISSN
1662-5110
Page URI
https://pub.uni-bielefeld.de/record/2487934
Zitieren
Hennig P, Egelhaaf M. Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits. 2012;6:14.
Hennig, P., & Egelhaaf, M. (2012). Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits, 6, 14. doi:10.3389/fncir.2012.00014
Hennig, Patrick, and Egelhaaf, Martin. 2012. “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”. Frontiers in Neural Circuits 6: 14.
Hennig, P., and Egelhaaf, M. (2012). Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits 6, 14.
Hennig, P., & Egelhaaf, M., 2012. Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits, 6, p 14.
P. Hennig and M. Egelhaaf, “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”, Frontiers in Neural Circuits, vol. 6, 2012, pp. 14.
Hennig, P., Egelhaaf, M.: Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits. 6, 14 (2012).
Hennig, Patrick, and Egelhaaf, Martin. “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”. Frontiers in Neural Circuits 6 (2012): 14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:01Z
MD5 Prüfsumme
e41088550084722794f43ef623ad487a
Daten bereitgestellt von European Bioinformatics Institute (EBI)
10 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Stereopsis in animals: evolution, function and mechanisms.
Nityananda V, Read JCA., J Exp Biol 220(pt 14), 2017
PMID: 28724702
Nityananda V, Read JCA., J Exp Biol 220(pt 14), 2017
PMID: 28724702
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Depth information in natural environments derived from optic flow by insect motion detection system: a model analysis.
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Schwegmann A, Lindemann JP, Egelhaaf M., Front Comput Neurosci 8(), 2014
PMID: 25136314
Impact of stride-coupled gaze shifts of walking blowflies on the neuronal representation of visual targets.
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Kress D, Egelhaaf M., Front Behav Neurosci 8(), 2014
PMID: 25309362
Self-motion perception in the elderly.
Lich M, Bremmer F., Front Hum Neurosci 8(), 2014
PMID: 25309379
Lich M, Bremmer F., Front Hum Neurosci 8(), 2014
PMID: 25309379
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Motion as a source of environmental information: a fresh view on biological motion computation by insect brains.
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Egelhaaf M, Kern R, Lindemann JP., Front Neural Circuits 8(), 2014
PMID: 25389392
Behaviorally related neural plasticity in the arthropod optic lobes.
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913
92 References
Daten bereitgestellt von Europe PubMed Central.
Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
Barnett PD, Nordstrom K, O'carroll DC., Curr. Biol. 17(7), 2007
PMID: 17363248
Barnett PD, Nordstrom K, O'carroll DC., Curr. Biol. 17(7), 2007
PMID: 17363248
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Chasing a dummy target: smooth pursuit and velocity control in male blowflies.
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
“Processing of synaptic signals in fly visual interneurons selectively responsive to small moving objects,”
Borst A., Egelhaaf M.., 1993
Borst A., Egelhaaf M.., 1993
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Photoreceptor processing improves salience facilitating small target detection in cluttered scenes.
Brinkworth RS, Mah EL, Gray JP, O'Carroll DC., J Vis 8(11), 2008
PMID: 18831602
Brinkworth RS, Mah EL, Gray JP, O'Carroll DC., J Vis 8(11), 2008
PMID: 18831602
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett T., Land M.., 1975
Collett T., Land M.., 1975
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947039
Cuntz H, Haag J, Borst A., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947039
“Extracting egomotion parameters from optic flow: principal limits for animals and machines,”
Dahmen H., Wüst R., Zeil J.., 1997
Dahmen H., Wüst R., Zeil J.., 1997
Goal seeking in honeybees: matching of optic flow snapshots?
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert H., Dvorak D.., 1983
Eckert H., Dvorak D.., 1983
“Towards an ecology of motion vision,”
Eckert M., Zeil J.., 2001
Eckert M., Zeil J.., 2001
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf M.., 1985
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells a new class of visual interneurones
Egelhaaf M.., 1985
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells
Egelhaaf M.., 1985
Egelhaaf M.., 1985
“The neural computation of visual motion information,”
Egelhaaf M.., 2006
Egelhaaf M.., 2006
Precise timing in fly motion vision is mediated by fast components of combined graded and spike signals.
Beckers U, Egelhaaf M, Kurtz R., Neuroscience 160(3), 2009
PMID: 19264111
Beckers U, Egelhaaf M, Kurtz R., Neuroscience 160(3), 2009
PMID: 19264111
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Motion computation and visual orientation in flies.
Egelhaaf M, Borst A., Comp. Biochem. Physiol. Comp. Physiol. 104(4), 1993
PMID: 8097978
Egelhaaf M, Borst A., Comp. Biochem. Physiol. Comp. Physiol. 104(4), 1993
PMID: 8097978
Computational structure of a biological motion-detection system as revealed by local detector analysis in the fly's nervous system.
Egelhaaf M, Borst A, Reichardt W., J Opt Soc Am A 6(7), 1989
PMID: 2760723
Egelhaaf M, Borst A, Reichardt W., J Opt Soc Am A 6(7), 1989
PMID: 2760723
Neural circuit tuning fly visual neurons to motion of small objects. II. Input organization of inhibitory circuit elements revealed by electrophysiological and optical recording techniques.
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Egelhaaf M, Borst A, Warzecha AK, Flecks S, Wildemann A., J. Neurophysiol. 69(2), 1993
PMID: 8459271
Exner S., Hardie R.., 1989
The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities.
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
Spatial response properties of contralateral inhibited lobula plate tangential cells in the fly visual system.
Gauck V, Borst A., J. Comp. Neurol. 406(1), 1999
PMID: 10100892
Gauck V, Borst A., J. Comp. Neurol. 406(1), 1999
PMID: 10100892
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
Geurten BR, Nordstrom K, Sprayberry JD, Bolzon DM, O'Carroll DC., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766305
Geurten BR, Nordstrom K, Sprayberry JD, Bolzon DM, O'Carroll DC., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766305
Gibson J.., 1979
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Recurrent network interactions underlying flow-field selectivity of visual interneurons.
Haag J, Borst A., J. Neurosci. 21(15), 2001
PMID: 11466440
Haag J, Borst A., J. Neurosci. 21(15), 2001
PMID: 11466440
Functional charaterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala
Hausen K.., 1976
Hausen K.., 1976
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
Hausen K.., 1982
“The lobula-complex of the fly: structure, function and significance in visual behaviour,”
Hausen K.., 1984
Hausen K.., 1984
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
Distributed dendritic processing facilitates object detection: a computational analysis on the visual system of the fly.
Hennig P, Moller R, Egelhaaf M., PLoS ONE 3(8), 2008
PMID: 18769475
Hennig P, Moller R, Egelhaaf M., PLoS ONE 3(8), 2008
PMID: 18769475
An elaborated model of fly small-target tracking.
Higgins CM, Pant V., Biol Cybern 91(6), 2004
PMID: 15597180
Higgins CM, Pant V., Biol Cybern 91(6), 2004
PMID: 15597180
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Edge detection by landing honeybees: behavioural analysis and model simulations of the underlying mechanism.
Kern R, Egelhaaf M, Srinivasan MV., Vision Res. 37(15), 1997
PMID: 9327058
Kern R, Egelhaaf M, Srinivasan MV., Vision Res. 37(15), 1997
PMID: 9327058
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Object detection by relative motion in freely flying flies
Kimmerle B., Srinivasan M., Egelhaaf M.., 1996
Kimmerle B., Srinivasan M., Egelhaaf M.., 1996
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Koch C.., 1999
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Lappe M.., 2000
Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly
Laughlin S., Hardie R.., 1978
Laughlin S., Hardie R.., 1978
Mechanisms for neural signal enhancement in the blowfly compound eye
Laughlin S., Osorio D.., 1989
Laughlin S., Osorio D.., 1989
Object detection by honeybees: why do they land on edges?
Lehrer M., Srinivasan M.., 1993
Lehrer M., Srinivasan M.., 1993
Motion cues provide the bee's visual world with a third dimension
Lehrer M., Srinivasan M., Zhang S., Horridge G.., 1988
Lehrer M., Srinivasan M., Zhang S., Horridge G.., 1988
Visual object detection and distance encoding in three-dimensional environments by a neuronal circuit of the blowfly
Liang P., Heitwerth J., Kern R., Kurtz R., Egelhaaf M.., 2012
Liang P., Heitwerth J., Kern R., Kurtz R., Egelhaaf M.., 2012
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Implementation of an elaborated neuromorphic model of a biological photoreceptor.
Mah EL, Brinkworth RS, O'Carroll DC., Biol Cybern 98(5), 2008
PMID: 18327606
Mah EL, Brinkworth RS, O'Carroll DC., Biol Cybern 98(5), 2008
PMID: 18327606
Pattern-dependent response modulations in motion-sensitive visual interneurons--a model study.
Meyer HG, Lindemann JP, Egelhaaf M., PLoS ONE 6(7), 2011
PMID: 21760894
Meyer HG, Lindemann JP, Egelhaaf M., PLoS ONE 6(7), 2011
PMID: 21760894
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Small object detection neurons in female hoverflies.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Local and global responses of insect motion detectors to the spatial structure of natural scenes.
O'Carroll DC, Barnett PD, Nordstrom K., J Vis 11(14), 2011
PMID: 22201615
O'Carroll DC, Barnett PD, Nordstrom K., J Vis 11(14), 2011
PMID: 22201615
Object- and self-movement detectors in the ventral nerve cord of the dragonfly
Olberg R.., 1981
Olberg R.., 1981
Identified target-selective visual interneurons descending from the dragonfly brain
Olberg R.., 1986
Olberg R.., 1986
Prey pursuit and interception in dragonflies.
Olberg RM, Worthington AH, Venator KR., J. Comp. Physiol. A 186(2), 2000
PMID: 10707313
Olberg RM, Worthington AH, Venator KR., J. Comp. Physiol. A 186(2), 2000
PMID: 10707313
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
“An introduction to differential evolution,”
Price K.., 1999
Price K.., 1999
Implementation of saturation for modelling pattern noise using naturalistic stimuli
Rajesh S., Rainsford T., Brinkworth R., Abbott D., O'Carroll D.., 2006
Rajesh S., Rainsford T., Brinkworth R., Abbott D., O'Carroll D.., 2006
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol. 8(), 2010
PMID: 20384983
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol. 8(), 2010
PMID: 20384983
How insects infer range from visual motion.
Srinivasan MV., Rev Oculomot Res 5(), 1993
PMID: 8420547
Srinivasan MV., Rev Oculomot Res 5(), 1993
PMID: 8420547
How honeybees measure their distance from objects of unknown size
Srinivasan M., Lehrer M., Zhang S., Horridge G.., 1989
Srinivasan M., Lehrer M., Zhang S., Horridge G.., 1989
Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
Storn R., Price K.., 1997
Storn R., Price K.., 1997
Structural organization of male-specific visual neurons in calliphorid optic lobes.
Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723430
Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723430
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Chasing behavior and optomotor following in free-flying male blowflies: flight performance and interactions of the underlying control systems.
Trischler C, Kern R, Egelhaaf M., Front Behav Neurosci 4(), 2010
PMID: 20514339
Trischler C, Kern R, Egelhaaf M., Front Behav Neurosci 4(), 2010
PMID: 20514339
The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster.
Tammero LF, Dickinson MH., J. Exp. Biol. 205(Pt 3), 2002
PMID: 11854370
Tammero LF, Dickinson MH., J. Exp. Biol. 205(Pt 3), 2002
PMID: 11854370
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Information theoretical evaluation of parametric models of gain control in blowfly photoreceptor cells.
van Hateren JH, Snippe HP., Vision Res. 41(14), 2001
PMID: 11369048
van Hateren JH, Snippe HP., Vision Res. 41(14), 2001
PMID: 11369048
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060
Wachenfeld A.., 1994
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I. Organization of the flight motor
Wagner H.., 1986
Wagner H.., 1986
Neural circuit tuning fly visual interneurons to motion of small objects. I. Dissection of the circuit by pharmacological and photoinactivation techniques.
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
Warzecha AK, Egelhaaf M, Borst A., J. Neurophysiol. 69(2), 1993
PMID: 8459270
Sex-specific differences in the chasing behaviour of houseflies (Musca)
Wehrhahn C.., 1979
Wehrhahn C.., 1979
Tracking and chasing in houseflies (Musca)
Wehrhahn C., Poggio T., Bülthoff H.., 1982
Wehrhahn C., Poggio T., Bülthoff H.., 1982
Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes
Wiederman S., Brinkworth R., O'Carroll D.., 2010
Wiederman S., Brinkworth R., O'Carroll D.., 2010
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Sexual dimorphism in the visual system of flies: the divided brain of male Bibionidae (Diptera).
Zeil J., Cell Tissue Res. 229(3), 1983
PMID: 6839353
Zeil J., Cell Tissue Res. 229(3), 1983
PMID: 6839353
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 22461769
PubMed | Europe PMC
Suchen in