Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing

Hennig P, Egelhaaf M (2012)
Frontiers in Neural Circuits 6: 14.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Abstract / Bemerkung
We developed a model of the input circuitry of the FD1 cell, an identified motion-sensitive interneuron in the blowfly's visual system. The model circuit successfully reproduces the FD1 cell's most conspicuous property: its larger responses to objects than to spatially extended patterns. The model circuit also mimics the time-dependent responses of FD1 to dynamically complex naturalistic stimuli, shaped by the blowfly's saccadic flight and gaze strategy: the FD1 responses are enhanced when, as a consequence of self-motion, a nearby object crosses the receptive field during intersaccadic intervals. Moreover, the model predicts that these object-induced responses are superimposed by pronounced pattern-dependent fluctuations during movements on virtual test flights in a three-dimensional environment with systematic modifications of the environmental patterns. Hence, the FD1 cell is predicted to detect not unambiguously objects defined by the spatial layout of the environment, but to be also sensitive to objects distinguished by textural features. These ambiguous detection abilities suggest an encoding of information about objects-irrespective of the features by which the objects are defined-by a population of cells, with the FD1 cell presumably playing a prominent role in such an ensemble.
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Neural Circuits
Band
6
Seite(n)
14
ISSN
1662-5110
eISSN
1662-5110
Page URI
https://pub.uni-bielefeld.de/record/2487934

Zitieren

Hennig P, Egelhaaf M. Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits. 2012;6:14.
Hennig, P., & Egelhaaf, M. (2012). Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits, 6, 14. doi:10.3389/fncir.2012.00014
Hennig, Patrick, and Egelhaaf, Martin. 2012. “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”. Frontiers in Neural Circuits 6: 14.
Hennig, P., and Egelhaaf, M. (2012). Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits 6, 14.
Hennig, P., & Egelhaaf, M., 2012. Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits, 6, p 14.
P. Hennig and M. Egelhaaf, “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”, Frontiers in Neural Circuits, vol. 6, 2012, pp. 14.
Hennig, P., Egelhaaf, M.: Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing. Frontiers in Neural Circuits. 6, 14 (2012).
Hennig, Patrick, and Egelhaaf, Martin. “Neuronal encoding of object and distance information: a model simulation study on naturalistic optic flow processing”. Frontiers in Neural Circuits 6 (2012): 14.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:18:01Z
MD5 Prüfsumme
e41088550084722794f43ef623ad487a


10 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Stereopsis in animals: evolution, function and mechanisms.
Nityananda V, Read JCA., J Exp Biol 220(pt 14), 2017
PMID: 28724702
Peripheral Processing Facilitates Optic Flow-Based Depth Perception.
Li J, Lindemann JP, Egelhaaf M., Front Comput Neurosci 10(), 2016
PMID: 27818631
Self-motion perception in the elderly.
Lich M, Bremmer F., Front Hum Neurosci 8(), 2014
PMID: 25309379
Visual motion-sensitive neurons in the bumblebee brain convey information about landmarks during a navigational task.
Mertes M, Dittmar L, Egelhaaf M, Boeddeker N., Front Behav Neurosci 8(), 2014
PMID: 25309374
Behaviorally related neural plasticity in the arthropod optic lobes.
Berón de Astrada M, Bengochea M, Sztarker J, Delorenzi A, Tomsic D., Curr Biol 23(15), 2013
PMID: 23831291
Texture dependence of motion sensing and free flight behavior in blowflies.
Lindemann JP, Egelhaaf M., Front Behav Neurosci 6(), 2012
PMID: 23335890
Spatial vision in insects is facilitated by shaping the dynamics of visual input through behavioral action.
Egelhaaf M, Boeddeker N, Kern R, Kurtz R, Lindemann JP., Front Neural Circuits 6(), 2012
PMID: 23269913

92 References

Daten bereitgestellt von Europe PubMed Central.

Retinotopic organization of small-field-target-detecting neurons in the insect visual system.
Barnett PD, Nordstrom K, O'carroll DC., Curr. Biol. 17(7), 2007
PMID: 17363248
The fine structure of honeybee head and body yaw movements in a homing task.
Boeddeker N, Dittmar L, Sturzl W, Egelhaaf M., Proc. Biol. Sci. 277(1689), 2010
PMID: 20147329
Chasing a dummy target: smooth pursuit and velocity control in male blowflies.
Boeddeker N, Kern R, Egelhaaf M., Proc. Biol. Sci. 270(1513), 2003
PMID: 12639319
“Processing of synaptic signals in fly visual interneurons selectively responsive to small moving objects,”
Borst A., Egelhaaf M.., 1993
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Adaptation of response transients in fly motion vision. II: Model studies.
Borst A, Reisenman C, Haag J., Vision Res. 43(11), 2003
PMID: 12726836
Identifying prototypical components in behaviour using clustering algorithms.
Braun E, Geurten B, Egelhaaf M., PLoS ONE 5(2), 2010
PMID: 20179763
Photoreceptor processing improves salience facilitating small target detection in cluttered scenes.
Brinkworth RS, Mah EL, Gray JP, O'Carroll DC., J Vis 8(11), 2008
PMID: 18831602
Robust models for optic flow coding in natural scenes inspired by insect biology.
Brinkworth RS, O'Carroll DC., PLoS Comput. Biol. 5(11), 2009
PMID: 19893631
Visual control of flight behaviour in the hoverfly Syritta pipiens L
Collett T., Land M.., 1975
Neural image processing by dendritic networks.
Cuntz H, Haag J, Borst A., Proc. Natl. Acad. Sci. U.S.A. 100(19), 2003
PMID: 12947039
“Extracting egomotion parameters from optic flow: principal limits for animals and machines,”
Dahmen H., Wüst R., Zeil J.., 1997
Goal seeking in honeybees: matching of optic flow snapshots?
Dittmar L, Sturzl W, Baird E, Boeddeker N, Egelhaaf M., J. Exp. Biol. 213(Pt 17), 2010
PMID: 20709919
The centrifugal horizontal cells in the lobula plate of the blowfly, Phaenicia sericata
Eckert H., Dvorak D.., 1983
“Towards an ecology of motion vision,”
Eckert M., Zeil J.., 2001
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells a new class of visual interneurones
Egelhaaf M.., 1985
On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-cells
Egelhaaf M.., 1985
“The neural computation of visual motion information,”
Egelhaaf M.., 2006
Transient and steady-state response properties of movement detectors.
Egelhaaf M, Borst A., J Opt Soc Am A 6(1), 1989
PMID: 2921651
Motion computation and visual orientation in flies.
Egelhaaf M, Borst A., Comp. Biochem. Physiol. Comp. Physiol. 104(4), 1993
PMID: 8097978

Exner S., Hardie R.., 1989
The dynamic nonlinear behavior of fly photoreceptors evoked by a wide range of light intensities.
French AS, Korenberg MJ, Jarvilehto M, Kouvalainen E, Juusola M, Weckstrom M., Biophys. J. 65(2), 1993
PMID: 8218908
A syntax of hoverfly flight prototypes.
Geurten BR, Kern R, Braun E, Egelhaaf M., J. Exp. Biol. 213(Pt 14), 2010
PMID: 20581276
Neural mechanisms underlying target detection in a dragonfly centrifugal neuron.
Geurten BR, Nordstrom K, Sprayberry JD, Bolzon DM, O'Carroll DC., J. Exp. Biol. 210(Pt 18), 2007
PMID: 17766305

Gibson J.., 1979
The functional organization of male-specific visual neurons in flies.
Gilbert C, Strausfeld NJ., J. Comp. Physiol. A 169(4), 1991
PMID: 1723431
Functional charaterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala
Hausen K.., 1976
Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics
Hausen K.., 1982
“The lobula-complex of the fly: structure, function and significance in visual behaviour,”
Hausen K.., 1984
Binocular integration of visual information: a model study on naturalistic optic flow processing.
Hennig P, Kern R, Egelhaaf M., Front Neural Circuits 5(), 2011
PMID: 21519385
An elaborated model of fly small-target tracking.
Higgins CM, Pant V., Biol Cybern 91(6), 2004
PMID: 15597180
Nonlinear models of the first synapse in the light-adapted fly retina.
Juusola M, Weckstrom M, Uusitalo RO, Korenberg MJ, French AS., J. Neurophysiol. 74(6), 1995
PMID: 8747212
Encoding of naturalistic optic flow by a population of blowfly motion-sensitive neurons.
Karmeier K, van Hateren JH, Kern R, Egelhaaf M., J. Neurophysiol. 96(3), 2006
PMID: 16687623
Function of a fly motion-sensitive neuron matches eye movements during free flight.
Kern R, van Hateren JH, Michaelis C, Lindemann JP, Egelhaaf M., PLoS Biol. 3(6), 2005
PMID: 15884977
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039
Performance of fly visual interneurons during object fixation.
Kimmerle B, Egelhaaf M., J. Neurosci. 20(16), 2000
PMID: 10934276
Object fixation by the blowfly during tethered flight in a simulated three-dimensional environment.
Kimmerle B, Eickermann J, Egelhaaf M., J. Exp. Biol. 203(Pt 11), 2000
PMID: 10804162
Object detection by relative motion in freely flying flies
Kimmerle B., Srinivasan M., Egelhaaf M.., 1996
Detection of object motion by a fly neuron during simulated flight.
Kimmerle B, Egelhaaf M., J. Comp. Physiol. A 186(1), 2000
PMID: 10659039

Koch C.., 1999
Optic flow.
Koenderink JJ., Vision Res. 26(1), 1986
PMID: 3716209
Binocular contributions to optic flow processing in the fly visual system.
Krapp HG, Hengstenberg R, Egelhaaf M., J. Neurophysiol. 85(2), 2001
PMID: 11160507
Visual acuity in insects.
Land MF., Annu. Rev. Entomol. 42(), 1997
PMID: 15012311

Lappe M.., 2000
The role of sensory adaptation in the retina.
Laughlin SB., J. Exp. Biol. 146(), 1989
PMID: 2689569
Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly
Laughlin S., Hardie R.., 1978
Mechanisms for neural signal enhancement in the blowfly compound eye
Laughlin S., Osorio D.., 1989
Object detection by honeybees: why do they land on edges?
Lehrer M., Srinivasan M.., 1993
Motion cues provide the bee's visual world with a third dimension
Lehrer M., Srinivasan M., Zhang S., Horridge G.., 1988
Visual object detection and distance encoding in three-dimensional environments by a neuronal circuit of the blowfly
Liang P., Heitwerth J., Kern R., Kurtz R., Egelhaaf M.., 2012
On the computations analyzing natural optic flow: quantitative model analysis of the blowfly motion vision pathway.
Lindemann JP, Kern R, van Hateren JH, Ritter H, Egelhaaf M., J. Neurosci. 25(27), 2005
PMID: 16000634
Implementation of an elaborated neuromorphic model of a biological photoreceptor.
Mah EL, Brinkworth RS, O'Carroll DC., Biol Cybern 98(5), 2008
PMID: 18327606
Insect detection of small targets moving in visual clutter.
Nordstrom K, Barnett PD, O'Carroll DC., PLoS Biol. 4(3), 2006
PMID: 16448249
Small object detection neurons in female hoverflies.
Nordstrom K, O'Carroll DC., Proc. Biol. Sci. 273(1591), 2006
PMID: 16720393
Object- and self-movement detectors in the ventral nerve cord of the dragonfly
Olberg R.., 1981
Identified target-selective visual interneurons descending from the dragonfly brain
Olberg R.., 1986
Prey pursuit and interception in dragonflies.
Olberg RM, Worthington AH, Venator KR., J. Comp. Physiol. A 186(2), 2000
PMID: 10707313
Arrangement of optical axes and spatial resolution in the compound eye of the female blowfly Calliphora.
Petrowitz R, Dahmen H, Egelhaaf M, Krapp HG., J. Comp. Physiol. A 186(7-8), 2000
PMID: 11016789
“An introduction to differential evolution,”
Price K.., 1999
Implementation of saturation for modelling pattern noise using naturalistic stimuli
Rajesh S., Rainsford T., Brinkworth R., Abbott D., O'Carroll D.., 2006
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Velocity constancy and models for wide-field visual motion detection in insects.
Shoemaker PA, O'Carroll DC, Straw AD., Biol Cybern 93(4), 2005
PMID: 16151841
Localized direction selective responses in the dendrites of visual interneurons of the fly.
Spalthoff C, Egelhaaf M, Tinnefeld P, Kurtz R., BMC Biol. 8(), 2010
PMID: 20384983
How insects infer range from visual motion.
Srinivasan MV., Rev Oculomot Res 5(), 1993
PMID: 8420547
How honeybees measure their distance from objects of unknown size
Srinivasan M., Lehrer M., Zhang S., Horridge G.., 1989
Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
Storn R., Price K.., 1997
Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli.
Trischler C, Boeddeker N, Egelhaaf M., J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 193(5), 2007
PMID: 17333206
Blowfly flight and optic flow. II. Head movements during flight
Hateren JH, Schilstra C., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229695
Function and coding in the blowfly H1 neuron during naturalistic optic flow.
van Hateren JH, Kern R, Schwerdtfeger G, Egelhaaf M., J. Neurosci. 25(17), 2005
PMID: 15858060

Wachenfeld A.., 1994
Flight performance and visual control of flight of the free-flying housefly (Musca domestica). I. Organization of the flight motor
Wagner H.., 1986
Sex-specific differences in the chasing behaviour of houseflies (Musca)
Wehrhahn C.., 1979
Tracking and chasing in houseflies (Musca)
Wehrhahn C., Poggio T., Bülthoff H.., 1982
Performance of a bio-inspired model for the robust detection of moving targets in high dynamic range natural scenes
Wiederman S., Brinkworth R., O'Carroll D.., 2010
A model for the detection of moving targets in visual clutter inspired by insect physiology.
Wiederman SD, Shoemaker PA, O'Carroll DC., PLoS ONE 3(7), 2008
PMID: 18665213
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22461769
PubMed | Europe PMC

Suchen in

Google Scholar