[{"language":[{"iso":"eng"}],"date_created":"2012-03-01T09:55:25Z","year":"2012","isi":"1","publisher":"Springer Science + Business Media","accept":"1","status":"public","keyword":["Permuted strings","Approximate search","analysis","Average case","Parikh vectors","String algorithms","Pattern matching"],"citation":{"bio1":"Burcsi P, Cicalese F, Fici G, Lipták Z (2012)

On Approximate Jumbled Pattern Matching in Strings.

Theory of Computing Systems 50(1): 35-51.","mla":"Burcsi, Peter, Cicalese, Ferdinando, Fici, Gabriele, and Lipták, Zsuzsanna. “On Approximate Jumbled Pattern Matching in Strings”. *Theory of Computing Systems* 50.1 (2012): 35-51.","chicago":"Burcsi, Peter, Cicalese, Ferdinando, Fici, Gabriele, and Lipták, Zsuzsanna. 2012. “On Approximate Jumbled Pattern Matching in Strings”. *Theory of Computing Systems* 50 (1): 35-51.

","dgps":"Burcsi, P., Cicalese, F., Fici, G. & Lipták, Z. (2012). On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems*, *50*(1), 35-51. Springer Science + Business Media. doi:10.1007/s00224-011-9344-5.

","default":"Burcsi P, Cicalese F, Fici G, Lipták Z (2012)

*Theory of Computing Systems* 50(1): 35-51.","lncs":" Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: On Approximate Jumbled Pattern Matching in Strings. Theory of Computing Systems. 50, 35-51 (2012).","angewandte-chemie":"P. Burcsi, F. Cicalese, G. Fici, and Z. Lipták, “On Approximate Jumbled Pattern Matching in Strings”, *Theory of Computing Systems*, **2012**, *50*, 35-51.","apa_indent":"Burcsi, P., Cicalese, F., Fici, G., & Lipták, Z. (2012). On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems*, *50*(1), 35-51. doi:10.1007/s00224-011-9344-5

","aps":" P. Burcsi, et al., On Approximate Jumbled Pattern Matching in Strings, Theory of Computing Systems **50**, 35 (2012).","harvard1":"Burcsi, P., et al., 2012. On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems*, 50(1), p 35-51.","wels":"Burcsi, P.; Cicalese, F.; Fici, G.; Lipták, Z. (2012): On Approximate Jumbled Pattern Matching in Strings *Theory of Computing Systems*,50:(1): 35-51.","ieee":" P. Burcsi, et al., “On Approximate Jumbled Pattern Matching in Strings”, *Theory of Computing Systems*, vol. 50, 2012, pp. 35-51.","apa":"Burcsi, P., Cicalese, F., Fici, G., & Lipták, Z. (2012). On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems*, *50*(1), 35-51. doi:10.1007/s00224-011-9344-5","ama":"Burcsi P, Cicalese F, Fici G, Lipták Z. On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems*. 2012;50(1):35-51.","frontiers":"Burcsi, P., Cicalese, F., Fici, G., and Lipták, Z. (2012). On Approximate Jumbled Pattern Matching in Strings. *Theory of Computing Systems* 50, 35-51."},"date_submitted":"2012-03-01T12:05:05Z","department":[{"_id":"10036"},{"_id":"89815"}],"intvolume":" 50","date_updated":"2018-07-24T13:00:40Z","issue":"1","publication_identifier":{"issn":["1432-4350"],"eissn":["1433-0490"]},"page":"35-51","volume":"50","abstract":[{"text":"Given a string s, the Parikh vector of s, denoted p(s), counts the multiplicity of each character in s. Searching for a match of a Parikh vector q in the text s requires finding a substring t of s with p(t) = q. This can be viewed as the task of finding a jumbled (permuted) version of a query pattern, hence the term Jumbled Pattern Matching. We present several algorithms for the approximate version of the problem: Given a string s and two Parikh vectors u, v (the query bounds), find all maximal occurrences in s of some Parikh vector q such that u <= q <= v. This definition encompasses several natural versions of approximate Parikh vector search. We present an algorithm solving this problem in sub-linear expected time using a wavelet tree of s, which can be computed in time O(n) in a preprocessing phase. We then discuss a Scrabble-like variation of the problem, in which a weight function on the letters of s is given and one has to find all occurrences in s of a substring t with maximum weight having Parikh vector p(t) <= v. For the case of a binary alphabet, we present an algorithm which solves the decision version of the Approximate Jumbled Pattern Matching problem in constant time, by indexing the string in subquadratic time.","lang":"eng"}],"article_type":"original","first_author":"Burcsi, Peter","publication":"Theory of Computing Systems","type":"journal_article","publication_status":"published","quality_controlled":"1","_id":"2474531","id":"2474531","external_id":{"isi":["000299091300004"]},"author":[{"last_name":"Burcsi","first_name":"Peter","full_name":"Burcsi, Peter","autoren_ansetzung":["Burcsi, Peter","Burcsi","Peter Burcsi","Burcsi, P","Burcsi, P.","P Burcsi","P. Burcsi"]},{"autoren_ansetzung":["Cicalese, Ferdinando","Cicalese","Ferdinando Cicalese","Cicalese, F","Cicalese, F.","F Cicalese","F. Cicalese"],"full_name":"Cicalese, Ferdinando","first_name":"Ferdinando","last_name":"Cicalese"},{"last_name":"Fici","full_name":"Fici, Gabriele","autoren_ansetzung":["Fici, Gabriele","Fici","Gabriele Fici","Fici, G","Fici, G.","G Fici","G. Fici"],"first_name":"Gabriele"},{"full_name":"Lipták, Zsuzsanna","autoren_ansetzung":["Lipták, Zsuzsanna","Lipták","Zsuzsanna Lipták","Lipták, Z","Lipták, Z.","Z Lipták","Z. Lipták"],"first_name":"Zsuzsanna","last_name":"Lipták","id":"164350"}],"doi":"10.1007/s00224-011-9344-5","title":"On Approximate Jumbled Pattern Matching in Strings"}]