Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles

May F, Peter M, Hütten A, Prodi L, Mattay J (2012)
Chemistry 18(3): 814-821.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Switchable fluorescent silica nanoparticles have been prepared by covalently incorporating a fluorophore and a photochromic compound inside the particle core. The fluorescence can be switched reversibly between an on- and off-state via energy transfer. The particles were synthesized using different amounts of the photoswitchable compound (spiropyran) and the fluorophore (rhodamine B) in a size distribution between 98 and 140 nm and were characterized in terms of size, switching properties, and fluorescence efficiency by TEM, and UV\Vis and fluorescence spectroscopy.
Stichworte
rhodamine; FRET; fluorescence spectroscopy; silica nanoparticles; spiropyran
Erscheinungsjahr
2012
Zeitschriftentitel
Chemistry
Band
18
Ausgabe
3
Seite(n)
814-821
ISSN
0947-6539
Page URI
https://pub.uni-bielefeld.de/record/2474473

Zitieren

May F, Peter M, Hütten A, Prodi L, Mattay J. Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles. Chemistry. 2012;18(3):814-821.
May, F., Peter, M., Hütten, A., Prodi, L., & Mattay, J. (2012). Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles. Chemistry, 18(3), 814-821. doi:10.1002/chem.201102961
May, F., Peter, M., Hütten, A., Prodi, L., and Mattay, J. (2012). Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles. Chemistry 18, 814-821.
May, F., et al., 2012. Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles. Chemistry, 18(3), p 814-821.
F. May, et al., “Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles”, Chemistry, vol. 18, 2012, pp. 814-821.
May, F., Peter, M., Hütten, A., Prodi, L., Mattay, J.: Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles. Chemistry. 18, 814-821 (2012).
May, Florian, Peter, Michael, Hütten, Andreas, Prodi, Luca, and Mattay, Jochen. “Synthesis and Characterization of Photoswitchable Fluorescent SiO2 Nanoparticles”. Chemistry 18.3 (2012): 814-821.

5 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Photoswitchable Spiropyran Dyads for Biological Imaging.
Xiong Y, Rivera-Fuentes P, Sezgin E, Vargas Jentzsch A, Eggeling C, Anderson HL., Org Lett 18(15), 2016
PMID: 27456166
Photoswitchable fluorescent nanoparticles and their emerging applications.
Zhang Y, Zhang K, Wang J, Tian Z, Li AD., Nanoscale 7(46), 2015
PMID: 26445313
Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes.
Genovese D, Rampazzo E, Bonacchi S, Montalti M, Zaccheroni N, Prodi L., Nanoscale 6(6), 2014
PMID: 24531884
White fluorescence from core-shell silica nanoparticles.
Malinge J, Allain C, Brosseau A, Audebert P., Angew Chem Int Ed Engl 51(34), 2012
PMID: 22811392

43 References

Daten bereitgestellt von Europe PubMed Central.


Abbe, 1873
Resolution scaling in STED microscopy.
Harke B, Keller J, Ullal CK, Westphal V, Schonle A, Hell SW., Opt Express 16(6), 2008
PMID: 18542512

Hell, Biospektrum 12(), 2006

Heilemann, Angew. Chem. 120(), 2008
Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes.
Heilemann M, van de Linde S, Schuttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M., Angew. Chem. Int. Ed. Engl. 47(33), 2008
PMID: 18646237
The effect of photoswitching kinetics and labeling densities on super-resolution fluorescence imaging.
van de Linde S, Wolter S, Heilemann M, Sauer M., J. Biotechnol. 149(4), 2010
PMID: 20176060

Dürr, 1990

Feringa, 2000
Spiropyrans as molecular optical switches.
Seefeldt B, Kasper R, Beining M, Mattay J, Arden-Jacob J, Kemnitzer N, Drexhage KH, Heilemann M, Sauer M., Photochem. Photobiol. Sci. 9(2), 2010
PMID: 20126797

Förster, Ann. Phys. 437(), 1948

Andrews, Eur. J. Phys. 25(), 2004
Photoregulation of fluorescence in a porphyrinic dithienylethene photochrome.
Norsten TB, Branda NR., J. Am. Chem. Soc. 123(8), 2001
PMID: 11456790
Light-controlled molecular switches modulate nanocrystal fluorescence.
Zhu L, Zhu MQ, Hurst JK, Li AD., J. Am. Chem. Soc. 127(25), 2005
PMID: 15969571
Kinetic characterization of spiropyrans in aqueous media.
Stafforst T, Hilvert D., Chem. Commun. (Camb.) (3), 2008
PMID: 19209304

Bonacchi, Angew. Chem. 123(), 2011
Luminescent silica nanoparticles: extending the frontiers of brightness.
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N., Angew. Chem. Int. Ed. Engl. 50(18), 2011
PMID: 21442691

AUTHOR UNKNOWN, 0
Energy transfer in fluorescent silica nanoparticles.
Montalti M, Prodi L, Zaccheroni N, Zattoni A, Reschiglian P, Falini G., Langmuir 20(7), 2004
PMID: 15835186
Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores.
Rampazzo E, Bonacchi S, Juris R, Montalti M, Genovese D, Zaccheroni N, Prodi L, Rambaldi DC, Zattoni A, Reschiglian P., J Phys Chem B 114(45), 2010
PMID: 21070057
Synthesis and characterization of photoswitchable fluorescent silica nanoparticles.
Folling J, Polyakova S, Belov V, van Blaaderen A, Bossi ML, Hell SW., Small 4(1), 2008
PMID: 18064615
Reversible fluorescence modulation through energy transfer with ABC triblock copolymer micelles as scaffolds.
Chen J, Zeng F, Wu S, Zhao J, Chen Q, Tong Z., Chem. Commun. (Camb.) (43), 2008
PMID: 18997958
Reversibly photoswitchable dual-color fluorescent nanoparticles as new tools for live-cell imaging.
Zhu L, Wu W, Zhu MQ, Han JJ, Hurst JK, Li AD., J. Am. Chem. Soc. 129(12), 2007
PMID: 17335209

Jain, J. Am. Chem. Soc. 120(), 1998

Piard, New J. Chem. 33(), 2009
Reversible photoswitching of dye-doped core-shell nanoparticles.
Genovese D, Montalti M, Prodi L, Rampazzo E, Zaccheroni N, Tosic O, Altenhoner K, May F, Mattay J., Chem. Commun. (Camb.) 47(39), 2011
PMID: 21909549

Kinashi, J. Photochem. Photobiol. A 213(), 2010

Allouche, J. Mater. Chem. 20(), 2010
Digital processing with a three-state molecular switch.
Raymo FM, Giordani S, White AJ, Williams DJ., J. Org. Chem. 68(11), 2003
PMID: 12762714
Practical synthetic route to functionalized rhodamine dyes.
Nguyen T, Francis MB., Org. Lett. 5(18), 2003
PMID: 12943398
Molecular fluorescence, phosphorescence, and chemiluminescence spectrometry.
Powe AM, Das S, Lowry M, El-Zahab B, Fakayode SO, Geng ML, Baker GA, Wang L, McCarroll ME, Patonay G, Li M, Aljarrah M, Neal S, Warner IM., Anal. Chem. 82(12), 2010
PMID: 20540564
Far-field optical nanoscopy.
Hell SW., Science 316(5828), 2007
PMID: 17525330

LaMer, J. Am. Chem. Soc. 72(), 1950
Design of bis-spiropyran ligands as dipolar molecule receptors and application to in vivo glutathione fluorescent probes.
Shao N, Jin J, Wang H, Zheng J, Yang R, Chan W, Abliz Z., J. Am. Chem. Soc. 132(2), 2010
PMID: 20030359
Photochromism of spiropyran in ionic liquids: enhanced fluorescence and delayed thermal reversion.
Zhang S, Zhang Q, Ye B, Li X, Zhang X, Deng Y., J Phys Chem B 113(17), 2009
PMID: 19344104
Photoswitched singlet energy transfer in a porphyrin-spiropyran dyad.
Bahr JL, Kodis G, de la Garza L, Lin S, Moore AL, Moore TA, Gust D., J. Am. Chem. Soc. 123(29), 2001
PMID: 11459493

Minami, J. Phys. Chem. 95(), 1991
Material in PUB:
Teil dieser Dissertation

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 22213584
PubMed | Europe PMC

Suchen in

Google Scholar