Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase

Fraschetti C, Letzel M, Paletta M, Mattay J, Speranza M, Filippi A, Aschi M, Rozhenko AB (2012)
Journal of Mass Spectrometry 47(1): 72-78.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Fraschetti, Caterina; Letzel, MatthiasUniBi; Paletta, MarleneUniBi; Mattay, JochenUniBi; Speranza, Maurizio; Filippi, Antonello; Aschi, Massimiliano; Rozhenko, Alexander B.
Abstract / Bemerkung
The effect of cyclochirality of rccc-2,8,14,20-tetra-n-decyl-4,10,16,22-tetra-O-methylresorcin[4]arene (C) on the enantiodiscrimination of a number of chiral bidentate and tridentate aromatic and aliphatic biomolecules (G) has been investigated by nano-electrospray ionization (nano-ESI)-Fourier transform ion cyclotron resonance mass spectrometry. The experimental approach is based on the formation of diastereomeric proton-bound [C center dot H center dot G](+) complexes by nano-ESI of solutions containing an equimolar amount of quasi-enantiomers (C) together with the chiral guest (G) and the subsequent measurement of the rate of the G substitution by the attack of several achiral and chiral amines. In general, the heterochiral complexes react faster than the homochiral ones, except when G is an aminoalcoholic neurotransmitter whose complexes, beyond that, exhibit the highest enantioselectivity. The kinetic results were further supported by both collision-induced dissociation experiments on some of the relevant [C-2 center dot H center dot G](+) three-body species and Density functional theory (DFT) calculations performed on the most selective systems. Copyright (C) 2012 John Wiley & Sons, Ltd.
Stichworte
inherent chirality; FT-ICR; gas phase; enantiodiscrimination; cyclochirality; resorc[4]arene; ligand exchange; supramolecular complex
Erscheinungsjahr
2012
Zeitschriftentitel
Journal of Mass Spectrometry
Band
47
Ausgabe
1
Seite(n)
72-78
ISSN
1076-5174
Page URI
https://pub.uni-bielefeld.de/record/2474444

Zitieren

Fraschetti C, Letzel M, Paletta M, et al. Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. Journal of Mass Spectrometry. 2012;47(1):72-78.
Fraschetti, C., Letzel, M., Paletta, M., Mattay, J., Speranza, M., Filippi, A., Aschi, M., et al. (2012). Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. Journal of Mass Spectrometry, 47(1), 72-78. doi:10.1002/jms.2028
Fraschetti, Caterina, Letzel, Matthias, Paletta, Marlene, Mattay, Jochen, Speranza, Maurizio, Filippi, Antonello, Aschi, Massimiliano, and Rozhenko, Alexander B. 2012. “Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase”. Journal of Mass Spectrometry 47 (1): 72-78.
Fraschetti, C., Letzel, M., Paletta, M., Mattay, J., Speranza, M., Filippi, A., Aschi, M., and Rozhenko, A. B. (2012). Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. Journal of Mass Spectrometry 47, 72-78.
Fraschetti, C., et al., 2012. Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. Journal of Mass Spectrometry, 47(1), p 72-78.
C. Fraschetti, et al., “Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase”, Journal of Mass Spectrometry, vol. 47, 2012, pp. 72-78.
Fraschetti, C., Letzel, M., Paletta, M., Mattay, J., Speranza, M., Filippi, A., Aschi, M., Rozhenko, A.B.: Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase. Journal of Mass Spectrometry. 47, 72-78 (2012).
Fraschetti, Caterina, Letzel, Matthias, Paletta, Marlene, Mattay, Jochen, Speranza, Maurizio, Filippi, Antonello, Aschi, Massimiliano, and Rozhenko, Alexander B. “Cyclochiral resorcin[4]arenes as effective enantioselectors in the gas phase”. Journal of Mass Spectrometry 47.1 (2012): 72-78.

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Analysis of stereoisomers of chiral drug by mass spectrometry.
Chen X, Kang Y, Zeng S., Chirality 30(5), 2018
PMID: 29450916
Synthesis and conformational studies of chiral macrocyclic [1.1.1]metacyclophanes containing benzofuran rings.
Islam MM, Tomiyasu H, Matsumoto T, Tanaka J, Rahman S, Georghiou PE, Redshaw C, Yamato T., Org Biomol Chem 13(34), 2015
PMID: 26220058

62 References

Daten bereitgestellt von Europe PubMed Central.

Off-the-shelf proteins that rival tailor-made antibodies as catalysts.
Hollfelder F, Kirby AJ, Tawfik DS., Nature 383(6595), 1996
PMID: 8779715
Electrospray ionization mass spectrometry: a technology for studying noncovalent macromolecular complexes
Loo, Int. J. Mass Spectrom. 200(), 2000
Investigation of intact protein complexes by mass spectrometry.
Heck AJ, Van Den Heuvel RH., Mass Spectrom Rev 23(5), 2004
PMID: 15264235
Origin of diastereofacial selectivity in tertiary 2-adamantyl cations.
Filippi A, Trout NA, Brunelle P, Adcock W, Sorensen TS, Speranza M., J. Am. Chem. Soc. 123(26), 2001
PMID: 11427066
Importance of entropy in the diastereoselectivity of 5-substituted 2-methyladamant-2-yl cations.
Filippi A, Trout NA, Brunelle P, Adcock W, Sorensen TS, Speranza M., J. Org. Chem. 69(17), 2004
PMID: 15307721
The thermodynamic basis for enantiodiscrimination: gas-phase measurement of the enthalpy and entropy of chiral amine recognition by dimethyldiketopyridino-18-crown-6
Liang, J. Phys. Chem. A 106(), 2002
Chiral analysis by MS
Tao, Anal. Chem. 75(), 2003
Cavitand-porphyrins.
Starnes SD, Rudkevich DM, Rebek J Jr., J. Am. Chem. Soc. 123(20), 2001
PMID: 11457274
Self-folding cavitands od nanoscale dimensions
Lücking, J. Am. Chem. Soc. 122(), 2000
Depening cavitands
Rudkevich, J. Eur. Org. Chem. (), 1999
Nanoscale molecular contaniners
Rudkevich, Bull. Chem. Soc. Jpn. 75(), 2002

Cram, 1994
Pairwise selection of guests in a cylindrical molecular capsule of nanometre dimension
Heinz, J. Nature 394(), 1998

Rudkevich, Calixarenes (), 2001

AUTHOR UNKNOWN, 2001
Molecular encapsulation.
Hof F, Craig SL, Nuckolls C, Rebek J Jr., Angew. Chem. Int. Ed. Engl. 41(9), 2002
PMID: 19750648
From rotaxanes to knots. Templating, hydrogen bond patterns, and cyclochirality
Reuter, Pure Appl. Chem. 12(), 2000
“Inherent chirality” and curvature
Dalla, New J. Chem. 28(), 2004
Inherently chiral calixarenes: a decade's review
Zheng, J. Incl. Phenom. Macrocycl. Chem. (), 2011
Gas-phase interactions of calixarene and resorcinarene cavitands with molecular guests studied by mass spectrometry
Vincenti, Int. J. Mass Spectrom. 214(), 2002

Vincenti, Adv. Mass Spectrom. (), 1998
Host-guest complexation in the gas phase. Investigation of the mechanism of interaction between cavitands and neutral guest molecules
Vincenti, J. Chem. Soc. Perkin Trans. 2(), 1995
Bis(diamido)-bridged basket resorcin[4]arenes as enantioselective receptors for amino acids and amines
Botta, Eur.J. Org. Chem. (), 2007
Modelling amphetamine/receptor interactions: a gas-phase study of complexes formed between amphetamine and Some chiral amido[4]resorcinarenes.
Botta B, Tafi A, Caporuscio F, Botta M, Nevola L, D'Acquarica I, Fraschetti C, Speranza M., Chemistry 14(12), 2008
PMID: 18297667
Interactions of vinca alkaloid subunits with chiral amido[4]resorcinarenes: a dynamic, kinetic, and spectroscopic study.
Botta B, Fraschetti C, Novara FR, Tafi A, Sacco F, Mannina L, Sobolev AP, Mattay J, Letzel MC, Speranza M., Org. Biomol. Chem. 7(9), 2009
PMID: 19590774
Gas-phase enantioselectivity of chiral N-linked peptidoresorc[4]arene isomers toward dipeptides.
Botta B, Fraschetti C, D'Acquarica I, Speranza M, Novara FR, Mattay J, Letzel MC., J Phys Chem A 113(52), 2009
PMID: 19588897
Chiral discrimination on the host-guest-complexation of resorc[4]arenes with quarternary amines.
Mehdizadeh A, Letzel MC, Klaes M, Agena C, Mattay J., Eur J Mass Spectrom (Chichester) 10(5), 2004
PMID: 15531798
Mannich and O-alkylation reactions of tetraalkoxyresorcin[4]arenes - the use of some products in ligand-assisted reactions
Buckley, Eur. J. Org. Chem. 22(), 2006
Facile lewis acid catalyzed synthesis of C(4) symmetric resorcinarenes
McIldowie MJ, Mocerino M, Skelton BW, White AH., Org. Lett. 2(24), 2000
PMID: 11101440
New insights into the geometry of resorc[4]arenes: solvent-mediated supramolecular conformational and chiroptical control.
Schiel C, Hembury GA, Borovkov VV, Klaes M, Agena C, Wada T, Grimme S, Inoue Y, Mattay J., J. Org. Chem. 71(3), 2006
PMID: 16438509
Deiterium nuclear magnetic resonance studies of alkyl-modified silica
Gangoda, J. Phys. Chem. 93(), 1989
Chiral recognition in host-guest complexation determined by FAB mass spectrometry
Sawada, J. Mass Spectrom. Soc. Jpn. 45(3), 1997
Polymer brushes on single-walled carbon nanotubes by atom transfer radical polymerization of n-butyl methacrylate.
Qin S, Qin D, Ford WT, Resasco DE, Herrera JE., J. Am. Chem. Soc. 126(1), 2004
PMID: 14709081
Copper-catalyzed cross-coupling reaction of grignard reagents with primary-alkyl halides: remarkable effect of 1-phenylpropyne.
Terao J, Todo H, Begum SA, Kuniyasu H, Kambe N., Angew. Chem. Int. Ed. Engl. 46(12), 2007
PMID: 17278171
Girard T Reagent for Carbonyls
Gaddis, Nature 191(), 1961
First synthesis, isolation and characterization of enantiomerically pure and inherently chiral resorc[4]arenes by Lewis acid cyclization of a resorcinol monoalkyl ether
Klaes, Eur. J. Org. Chem. 8(), 2003
The preparation and absolute configurations of enantiomerically pure C4-symmetric tetraalkoxyresorcin[4]arenes obtained from camphorsulfonate derivatives
Buckley, Eur. J. Org. Chem. 22(), 2006
Electronic structure calculations on workstation computers: the program system turbomole
Ahlrichs, Chem. Phys. Lett. 162(), 1989
On some approximations in applications of Xα theory
Dunlap, J. Chem. Phys. 71(), 1979
Integral approximations for LCAO-SCF calculations
Vahtras, Chem. Phys. Lett. 213(), 1993
Auxiliary basis sets to approximate Coulomb potentials
Eichkorn, Chem. Phys. Lett. 240(), 1995
Auxiliary basis sets to approximate Coulomb potentials
Eichkorn, Chem. Phys. Lett. 242(), 1995

Ahlrichs, 1995
Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr
Schaefer, J. Chem. Phys. 100(), 1994
Nuclear second analytical derivative calculations using auxiliary basis set expansions
Deglmann, Chem. Phys. Lett. 384(), 2004
An efficient implementation of second analytical derivatives for density functional methods
Deglmann, Chem. Phys. Lett. 362(), 2002
Efficient characterization of stationary points on potential energy surfaces
Deglmann, J. Chem. Phys. 117(), 2002
VMD: visual molecular dynamics.
Humphrey W, Dalke A, Schulten K., J Mol Graph 14(1), 1996
PMID: 8744570
Parametrization of the ion-polar molecule collision rate constant by trajectory calculations
Su, J. Chem. Phys. 76(10), 1982
Erratum: trajectory calculations of ion-polar molecule capture rate constants at low temperatures [J. Chem. Phys. 1988, 88, 4102]
Su, J. Chem. Phys. 89(8), 1988

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Effect of solvation on the acid/base properties of glycine
Locke, J. Am. Chem. Soc. 105(), 1983

AUTHOR UNKNOWN, 0
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22282092
PubMed | Europe PMC

Suchen in

Google Scholar