Roles of heparan sulfate sulfation in dentinogenesis

Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Nururu MN, Kawanabe N, Saito M, Kamioka H, Adachi T, et al. (2012)
J. Biol. Chem. 287(15): 12217-12229.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Hayano, S.; Kurosaka, H.; Yanagita, T.; Kalus, InaUniBi; Milz, FabianUniBi; Ishihara, Y.; Nururu, M. N.; Kawanabe, N.; Saito, M.; Kamioka, H.; Adachi, T.; Dierks, ThomasUniBi
Alle
Abstract / Bemerkung
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.
Erscheinungsjahr
2012
Zeitschriftentitel
J. Biol. Chem.
Band
287
Ausgabe
15
Seite(n)
12217-12229
ISSN
0021-9258
eISSN
1083-351X
Page URI
https://pub.uni-bielefeld.de/record/2474206

Zitieren

Hayano S, Kurosaka H, Yanagita T, et al. Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem. 2012;287(15):12217-12229.
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, I., Milz, F., Ishihara, Y., Nururu, M. N., et al. (2012). Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem., 287(15), 12217-12229. doi:10.1074/jbc.M111.332924
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, Ina, Milz, Fabian, Ishihara, Y., Nururu, M. N., et al. 2012. “Roles of heparan sulfate sulfation in dentinogenesis”. J. Biol. Chem. 287 (15): 12217-12229.
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, I., Milz, F., Ishihara, Y., Nururu, M. N., Kawanabe, N., Saito, M., Kamioka, H., et al. (2012). Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem. 287, 12217-12229.
Hayano, S., et al., 2012. Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem., 287(15), p 12217-12229.
S. Hayano, et al., “Roles of heparan sulfate sulfation in dentinogenesis”, J. Biol. Chem., vol. 287, 2012, pp. 12217-12229.
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, I., Milz, F., Ishihara, Y., Nururu, M.N., Kawanabe, N., Saito, M., Kamioka, H., Adachi, T., Dierks, T., Yamashiro, T.: Roles of heparan sulfate sulfation in dentinogenesis. J. Biol. Chem. 287, 12217-12229 (2012).
Hayano, S., Kurosaka, H., Yanagita, T., Kalus, Ina, Milz, Fabian, Ishihara, Y., Nururu, M. N., Kawanabe, N., Saito, M., Kamioka, H., Adachi, T., Dierks, Thomas, and Yamashiro, T. “Roles of heparan sulfate sulfation in dentinogenesis”. J. Biol. Chem. 287.15 (2012): 12217-12229.

19 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

The "in and out" of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate.
El Masri R, Seffouh A, Lortat-Jacob H, Vivès RR., Glycoconj J 34(3), 2017
PMID: 27812771
Dentin matrix components extracted with phosphoric acid enhance cell proliferation and mineralization.
Salehi S, Cooper P, Smith A, Ferracane J., Dent Mater 32(3), 2016
PMID: 26777093
The role of heparan sulphate in development: the ectodermal story.
Coulson-Thomas VJ., Int J Exp Pathol 97(3), 2016
PMID: 27385054
Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44.
Umemura N, Ohkoshi E, Tajima M, Kikuchi H, Katayama T, Sakagami H., Stem Cell Res Ther 7(1), 2016
PMID: 27651223
SULF2, a heparan sulfate endosulfatase, is present in the blood of healthy individuals and increases in cirrhosis.
Singer MS, Phillips JJ, Lemjabbar-Alaoui H, Wang YQ, Wu J, Goldman R, Rosen SD., Clin Chim Acta 440(), 2015
PMID: 25444749
Differential expression of basal microRNAs' patterns in human dental pulp stem cells.
Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH., J Cell Mol Med 19(3), 2015
PMID: 25475098
Common polymorphisms in WNT10A affect tooth morphology as well as hair shape.
Kimura R, Watanabe C, Kawaguchi A, Kim YI, Park SB, Maki K, Ishida H, Yamaguchi T., Hum Mol Genet 24(9), 2015
PMID: 25612571
Topical application of lithium chloride on the pulp induces dentin regeneration.
Ishimoto K, Hayano S, Yanagita T, Kurosaka H, Kawanabe N, Itoh S, Ono M, Kuboki T, Kamioka H, Yamashiro T., PLoS One 10(3), 2015
PMID: 25812134
Inactivation of Fam20B in the dental epithelium of mice leads to supernumerary incisors.
Tian Y, Ma P, Liu C, Yang X, Crawford DM, Yan W, Bai D, Qin C, Wang X., Eur J Oral Sci 123(6), 2015
PMID: 26465965
Human genetic disorders and knockout mice deficient in glycosaminoglycan.
Mizumoto S, Yamada S, Sugahara K., Biomed Res Int 2014(), 2014
PMID: 25126564
Intersection of AHR and Wnt signaling in development, health, and disease.
Schneider AJ, Branam AM, Peterson RE., Int J Mol Sci 15(10), 2014
PMID: 25286307
Proteoglycans and their roles in brain cancer.
Wade A, Robinson AE, Engler JR, Petritsch C, James CD, Phillips JJ., FEBS J 280(10), 2013
PMID: 23281850
Down-regulation of Wnt10a affects odontogenesis and proliferation in mesenchymal cells.
Liu Y, Han D, Wang L, Feng H., Biochem Biophys Res Commun 434(4), 2013
PMID: 23603361
Cooperation of binding sites at the hydrophilic domain of cell-surface sulfatase Sulf1 allows for dynamic interaction of the enzyme with its substrate heparan sulfate.
Milz F, Harder A, Neuhaus P, Breitkreuz-Korff O, Walhorn V, Lübke T, Anselmetti D, Dierks T., Biochim Biophys Acta 1830(11), 2013
PMID: 23891937

54 References

Daten bereitgestellt von Europe PubMed Central.

A molecular mechanism for the effect of lithium on development.
Klein PS, Melton DA., Proc. Natl. Acad. Sci. U.S.A. 93(16), 1996
PMID: 8710892
QSulf1 remodels the 6-O sulfation states of cell surface heparan sulfate proteoglycans to promote Wnt signaling.
Ai X, Do AT, Lozynska O, Kusche-Gullberg M, Lindahl U, Emerson CP Jr., J. Cell Biol. 162(2), 2003
PMID: 12860968
Gene expression patterns of murine dentin matrix protein 1 (Dmp1) and dentin sialophosphoprotein (DSPP) suggest distinct developmental functions in vivo.
D'Souza RN, Cavender A, Sunavala G, Alvarez J, Ohshima T, Kulkarni AB, MacDougall M., J. Bone Miner. Res. 12(12), 1997
PMID: 9421236
Genomic organization, chromosomal mapping, and promoter analysis of the mouse dentin sialophosphoprotein (Dspp) gene, which codes for both dentin sialoprotein and dentin phosphoprotein.
Feng JQ, Luan X, Wallace J, Jing D, Ohshima T, Kulkarni AB, D'Souza RN, Kozak CA, MacDougall M., J. Biol. Chem. 273(16), 1998
PMID: 9545272
Expression of Wnt signalling pathway genes during tooth development.
Sarkar L, Sharpe PT., Mech. Dev. 85(1-2), 1999
PMID: 10415363
Molecular regulation of tooth development.
Thesleff I, Aberg T., Bone 25(1), 1999
PMID: 10423036
Structural basis for FGF receptor dimerization and activation.
Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M., Cell 98(5), 1999
PMID: 10490103
Enhanced levels of Hsulf-1 interfere with heparin-binding growth factor signaling in pancreatic cancer.
Li J, Kleeff J, Abiatari I, Kayed H, Giese NA, Felix K, Giese T, Buchler MW, Friess H., Mol. Cancer 4(1), 2005
PMID: 15817123
Novel heparan sulfate structures revealed by monoclonal antibodies.
van den Born J, Salmivirta K, Henttinen T, Ostman N, Ishimaru T, Miyaura S, Yoshida K, Salmivirta M., J. Biol. Chem. 280(21), 2005
PMID: 15778504
Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity.
Lamanna WC, Baldwin RJ, Padva M, Kalus I, Ten Dam G, van Kuppevelt TH, Gallagher JT, von Figura K, Dierks T, Merry CL., Biochem. J. 400(1), 2006
PMID: 16901266
Expression and physiological role of CCN4/Wnt-induced secreted protein 1 mRNA splicing variants in chondrocytes.
Yanagita T, Kubota S, Kawaki H, Kawata K, Kondo S, Takano-Yamamoto T, Tanaka S, Takigawa M., FEBS J. 274(7), 2007
PMID: 17381509
The heparanome--the enigma of encoding and decoding heparan sulfate sulfation.
Lamanna WC, Kalus I, Padva M, Baldwin RJ, Merry CL, Dierks T., J. Biotechnol. 129(2), 2007
PMID: 17337080
Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis.
Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I., Differentiation 75(5), 2007
PMID: 17286598
Secreted sulfatases Sulf1 and Sulf2 have overlapping yet essential roles in mouse neonatal survival.
Holst CR, Bou-Reslan H, Gore BB, Wong K, Grant D, Chalasani S, Carano RA, Frantz GD, Tessier-Lavigne M, Bolon B, French DM, Ashkenazi A., PLoS ONE 2(6), 2007
PMID: 17593974
Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity.
Kalus I, Salmen B, Viebahn C, von Figura K, Schmitz D, D'Hooge R, Dierks T., J. Cell. Mol. Med. 13(11-12), 2009
PMID: 20394677
PDGFs regulate tooth germ proliferation and ameloblast differentiation.
Wu N, Iwamoto T, Sugawara Y, Futaki M, Yoshizaki K, Yamamoto S, Yamada A, Nakamura T, Nonaka K, Fukumoto S., Arch. Oral Biol. 55(6), 2010
PMID: 20392435
Morphogenetic roles of perlecan in the tooth enamel organ: an analysis of overexpression using transgenic mice.
Ida-Yonemochi H, Satokata I, Ohshima H, Sato T, Yokoyama M, Yamada Y, Saku T., Matrix Biol. 30(7-8), 2011
PMID: 21933708
Heparan sulfate proteoglycans on the cell surface: versatile coordinators of cellular functions.
Tumova S, Woods A, Couchman JR., Int. J. Biochem. Cell Biol. 32(3), 2000
PMID: 10716625
Functions of cell surface heparan sulfate proteoglycans.
Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M., Annu. Rev. Biochem. 68(), 1999
PMID: 10872465
DSPP mutation in dentinogenesis imperfecta Shields type II.
Zhang X, Zhao J, Li C, Gao S, Qiu C, Liu P, Wu G, Qiang B, Lo WH, Shen Y., Nat. Genet. 27(2), 2001
PMID: 11175779
Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP.
Xiao S, Yu C, Chou X, Yuan W, Wang Y, Bu L, Fu G, Qian M, Yang J, Shi Y, Hu L, Han B, Wang Z, Huang W, Liu J, Chen Z, Zhao G, Kong X., Nat. Genet. 27(2), 2001
PMID: 11175790
Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto-onycho-dermal dysplasia.
Adaimy L, Chouery E, Megarbane H, Mroueh S, Delague V, Nicolas E, Belguith H, de Mazancourt P, Megarbane A., Am. J. Hum. Genet. 81(4), 2007
PMID: 17847007
SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation.
Ai X, Kitazawa T, Do AT, Kusche-Gullberg M, Labosky PA, Emerson CP Jr., Development 134(18), 2007
PMID: 17720696
Heparan sulfate: decoding a dynamic multifunctional cell regulator.
Turnbull J, Powell A, Guimond S., Trends Cell Biol. 11(2), 2001
PMID: 11166215
Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration.
Langsdorf A, Do AT, Kusche-Gullberg M, Emerson CP Jr, Ai X., Dev. Biol. 311(2), 2007
PMID: 17920055
Redundant function of the heparan sulfate 6-O-endosulfatases Sulf1 and Sulf2 during skeletal development.
Ratzka A, Kalus I, Moser M, Dierks T, Mundlos S, Vortkamp A., Dev. Dyn. 237(2), 2008
PMID: 18213582
The heparanome and regulation of cell function: structures, functions and challenges.
Ori A, Wilkinson MC, Fernig DG., Front. Biosci. 13(), 2008
PMID: 18508513
Characterization of the human sulfatase Sulf1 and its high affinity heparin/heparan sulfate interaction domain.
Frese MA, Milz F, Dick M, Lamanna WC, Dierks T., J. Biol. Chem. 284(41), 2009
PMID: 19666466
WNT10A missense mutation associated with a complete odonto-onycho-dermal dysplasia syndrome.
Nawaz S, Klar J, Wajid M, Aslam M, Tariq M, Schuster J, Baig SM, Dahl N., Eur. J. Hum. Genet. 17(12), 2009
PMID: 19471313
10E4 antigen of Scrapie lesions contains an unusual nonsulfated heparan motif.
Leteux C, Chai W, Nagai K, Herbert CG, Lawson AM, Feizi T., J. Biol. Chem. 276(16), 2001
PMID: 11278655
Mechanical stimulation induces CTGF expression in rat osteocytes.
Yamashiro T, Fukunaga T, Kobashi N, Kamioka H, Nakanishi T, Takigawa M, Takano-Yamamoto T., J. Dent. Res. 80(2), 2001
PMID: 11332533
Regulation of Wnt signaling and embryo patterning by an extracellular sulfatase.
Dhoot GK, Gustafsson MK, Ai X, Sun W, Standiford DM, Emerson CP Jr., Science 293(5535), 2001
PMID: 11533491
Mutations in AXIN2 cause familial tooth agenesis and predispose to colorectal cancer.
Lammi L, Arte S, Somer M, Jarvinen H, Lahermo P, Thesleff I, Pirinen S, Nieminen P., Am. J. Hum. Genet. 74(5), 2004
PMID: 15042511
Sulfation pattern in glycosaminoglycan: does it have a code?
Habuchi H, Habuchi O, Kimata K., Glycoconj. J. 21(1-2), 2004
PMID: 15467398
A proposed classification for heritable human dentine defects with a description of a new entity.
Shields ED, Bixler D, el-Kafrawy AM., Arch. Oral Biol. 18(4), 1973
PMID: 4516067
Heparan sulfate proteoglycans from mouse mammary epithelial cells: localization on the cell surface with a monoclonal antibody.
Jalkanen M, Nguyen H, Rapraeger A, Kurn N, Bernfield M., J. Cell Biol. 101(3), 1985
PMID: 3161899
Cell-matrix interactions in tooth development.
Thesleff I, Vainio S, Jalkanen M., Int. J. Dev. Biol. 33(1), 1989
PMID: 2485706
Developmental changes in heparan sulfate expression: in situ detection with mAbs.
David G, Bai XM, Van der Schueren B, Cassiman JJ, Van den Berghe H., J. Cell Biol. 119(4), 1992
PMID: 1385449
Dentinogenesis.
Linde A, Goldberg M., Crit. Rev. Oral Biol. Med. 4(5), 1993
PMID: 8292714
Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo.
Yip GW, Ferretti P, Copp AJ., Development 129(9), 2002
PMID: 11959821
The expression of dentin sialophosphoprotein gene in bone.
Qin C, Brunn JC, Cadena E, Ridall A, Tsujigiwa H, Nagatsuka H, Nagai N, Butler WT., J. Dent. Res. 81(6), 2002
PMID: 12097430
Cloning and characterization of two extracellular heparin-degrading endosulfatases in mice and humans.
Morimoto-Tomita M, Uchimura K, Werb Z, Hemmerich S, Rosen SD., J. Biol. Chem. 277(51), 2002
PMID: 12368295
Loss of HSulf-1 up-regulates heparin-binding growth factor signaling in cancer.
Lai J, Chien J, Staub J, Avula R, Greene EL, Matthews TA, Smith DI, Kaufmann SH, Roberts LR, Shridhar V., J. Biol. Chem. 278(25), 2003
PMID: 12686563
Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III.
Sreenath T, Thyagarajan T, Hall B, Longenecker G, D'Souza R, Hong S, Wright JT, MacDougall M, Sauk J, Kulkarni AB., J. Biol. Chem. 278(27), 2003
PMID: 12721295
Unusual beta-D-xylosides that prime glycosaminoglycans in animal cells.
Lugemwa FN, Sarkar AK, Esko JD., J. Biol. Chem. 271(32), 1996
PMID: 8702593
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22351753
PubMed | Europe PMC

Suchen in

Google Scholar