Real-time inference in a VLSI spiking neural network

Corneil D, Sonnleithner D, Neftci E, Chicca E, Cook M, Indiveri G, Douglas R (2012)
In: 2012 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE: 2425-2428.

Download
OA
Restricted Corneil_etal12.pdf 669.90 KB
Konferenzbeitrag | Veröffentlicht | Englisch
Volltext vorhanden für diesen Nachweis
Autor
; ; ; ; ; ;
Abstract / Bemerkung
The ongoing motor output of the brain depends on its remarkable ability to rapidly transform and fuse a variety of sensory streams in real-time. The brain processes these data using networks of neurons that communicate by asynchronous spikes, a technology that is dramatically different from conventional electronic systems. We report here a step towards constructing electronic systems with analogous performance to the brain. Our VLSLI spiking neural network combines in real-time three distinct sources of input data; each is place-encoded on an individual neuronal population that expresses soft Winner-Take-All dynamics. These arrays are combined according to a user-specified function that is embedded in the reciprocal connections between the soft Winner-Take-All populations and an intermediate shared population. The overall network is able to perform function approximation (missing data can be inferred from the available streams) and cue integration (when all input streams are present they enhance one another synergistically). The network performs these tasks with about 80% and 90% reliability, respectively. Our results suggest that with further technical improvement, it may be possible to implement more complex probabilistic models such as Bayesian networks in neuromorphic electronic systems.
Erscheinungsjahr
Titel des Konferenzbandes
2012 IEEE International Symposium on Circuits and Systems
Seite(n)
2425-2428
Konferenz
International Symposium on Circuits and Systems (ISCAS)
Konferenzort
Seoul, South Korea
Konferenzdatum
2012-05-20 – 2012-05-23
PUB-ID

Zitieren

Corneil D, Sonnleithner D, Neftci E, et al. Real-time inference in a VLSI spiking neural network. In: 2012 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE; 2012: 2425-2428.
Corneil, D., Sonnleithner, D., Neftci, E., Chicca, E., Cook, M., Indiveri, G., & Douglas, R. (2012). Real-time inference in a VLSI spiking neural network. 2012 IEEE International Symposium on Circuits and Systems, 2425-2428. Piscataway, NJ: IEEE. doi:10.1109/ISCAS.2012.6271788
Corneil, D., Sonnleithner, D., Neftci, E., Chicca, E., Cook, M., Indiveri, G., and Douglas, R. (2012). “Real-time inference in a VLSI spiking neural network” in 2012 IEEE International Symposium on Circuits and Systems (Piscataway, NJ: IEEE), 2425-2428.
Corneil, D., et al., 2012. Real-time inference in a VLSI spiking neural network. In 2012 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE, pp. 2425-2428.
D. Corneil, et al., “Real-time inference in a VLSI spiking neural network”, 2012 IEEE International Symposium on Circuits and Systems, Piscataway, NJ: IEEE, 2012, pp.2425-2428.
Corneil, D., Sonnleithner, D., Neftci, E., Chicca, E., Cook, M., Indiveri, G., Douglas, R.: Real-time inference in a VLSI spiking neural network. 2012 IEEE International Symposium on Circuits and Systems. p. 2425-2428. IEEE, Piscataway, NJ (2012).
Corneil, Dane, Sonnleithner, Daniel, Neftci, Emre, Chicca, Elisabetta, Cook, Matthew, Indiveri, Giacomo, and Douglas, Rodney. “Real-time inference in a VLSI spiking neural network”. 2012 IEEE International Symposium on Circuits and Systems. Piscataway, NJ: IEEE, 2012. 2425-2428.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2013-02-01T13:58:43Z
Name
Corneil_etal12.pdf 669.90 KB
Access Level
Restricted Closed Access
Zuletzt Hochgeladen
2019-04-08T16:13:38Z

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Suchen in

Google Scholar
ISBN Suche