Emergent auditory feature tuning in a real-time neuromorphic VLSI system

Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E (2012)
Frontiers in Neuroscience 6: 17.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Sheik, Sadique; Coath, Martin; Indiveri, Giacomo; Denham, Susan L.; Wennekers, Thomas; Chicca, ElisabettaUniBi
Abstract / Bemerkung
Many sounds of ecological importance, such as communication calls, are characterised by time-varying spectra. However, most neuromorphic auditory models to date have focused on distinguishing mainly static patterns, under the assumption that dynamic patterns can be learned as sequences of static ones. In contrast, the emergence of dynamic feature sensitivity through exposure to formative stimuli has been recently modeled in a network of spiking neurons based on the thalamocortical architecture. The proposed network models the effect of lateral and recurrent connections between cortical layers, distance-dependent axonal transmission delays, and learning in the form of Spike Timing Dependent Plasticity (STDP), which effects stimulus-driven changes in the pattern of network connectivity. In this paper we demonstrate how these principles can be efficiently implemented in neuromorphic hardware. In doing so we address two principle problems in the design of neuromorphic systems: real-time event-based asynchronous communication in multi-chip systems, and the realization in hybrid analog/digital VLSI technology of neural computational principles that we propose underlie plasticity in neural processing of dynamic stimuli. The result is a hardware neural network that learns in real-time and shows preferential responses, after exposure, to stimuli exhibiting particular spectrotemporal patterns. The availability of hardware on which the model can be implemented, makes this a significant step towards the development of adaptive, neurobiologically plausible, spike-based, artificial sensory systems.
Stichworte
unsupervised learning; neuromorphic VLSI; mismatch; spectro-temporal features; Address Event Representation (AER); STDP; auditory
Erscheinungsjahr
2012
Zeitschriftentitel
Frontiers in Neuroscience
Band
6
Art.-Nr.
17
ISSN
1662-4548
eISSN
1662-4548
Page URI
https://pub.uni-bielefeld.de/record/2462428

Zitieren

Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E. Emergent auditory feature tuning in a real-time neuromorphic VLSI system. Frontiers in Neuroscience. 2012;6: 17.
Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., & Chicca, E. (2012). Emergent auditory feature tuning in a real-time neuromorphic VLSI system. Frontiers in Neuroscience, 6, 17. doi:10.3389/fnins.2012.00017
Sheik, Sadique, Coath, Martin, Indiveri, Giacomo, Denham, Susan L., Wennekers, Thomas, and Chicca, Elisabetta. 2012. “Emergent auditory feature tuning in a real-time neuromorphic VLSI system”. Frontiers in Neuroscience 6: 17.
Sheik, S., Coath, M., Indiveri, G., Denham, S. L., Wennekers, T., and Chicca, E. (2012). Emergent auditory feature tuning in a real-time neuromorphic VLSI system. Frontiers in Neuroscience 6:17.
Sheik, S., et al., 2012. Emergent auditory feature tuning in a real-time neuromorphic VLSI system. Frontiers in Neuroscience, 6: 17.
S. Sheik, et al., “Emergent auditory feature tuning in a real-time neuromorphic VLSI system”, Frontiers in Neuroscience, vol. 6, 2012, : 17.
Sheik, S., Coath, M., Indiveri, G., Denham, S.L., Wennekers, T., Chicca, E.: Emergent auditory feature tuning in a real-time neuromorphic VLSI system. Frontiers in Neuroscience. 6, : 17 (2012).
Sheik, Sadique, Coath, Martin, Indiveri, Giacomo, Denham, Susan L., Wennekers, Thomas, and Chicca, Elisabetta. “Emergent auditory feature tuning in a real-time neuromorphic VLSI system”. Frontiers in Neuroscience 6 (2012): 17.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T09:17:59Z
MD5 Prüfsumme
f722b621c98dc02942aece622328c913


Link(s) zu Volltext(en)
Access Level
OA Open Access

8 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hodgkin-Huxley Neuron and FPAA Dynamics.
Natarajan A, Hasler J., IEEE Trans Biomed Circuits Syst 12(4), 2018
PMID: 30010587
Large-Scale Neuromorphic Spiking Array Processors: A Quest to Mimic the Brain.
Thakur CS, Molin JL, Cauwenberghs G, Indiveri G, Kumar K, Qiao N, Schemmel J, Wang R, Chicca E, Olson Hasler J, Seo JS, Yu S, Cao Y, van Schaik A, Etienne-Cummings R., Front Neurosci 12(), 2018
PMID: 30559644
Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware.
Knight JC, Tully PJ, Kaplan BA, Lansner A, Furber SB., Front Neuroanat 10(), 2016
PMID: 27092061
A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.
Qiao N, Mostafa H, Corradi F, Osswald M, Stefanini F, Sumislawska D, Indiveri G., Front Neurosci 9(), 2015
PMID: 25972778
Breaking the millisecond barrier on SpiNNaker: implementing asynchronous event-based plastic models with microsecond resolution.
Lagorce X, Stromatias E, Galluppi F, Plana LA, Liu SC, Furber SB, Benosman RB., Front Neurosci 9(), 2015
PMID: 26106288
A framework for plasticity implementation on the SpiNNaker neural architecture.
Galluppi F, Lagorce X, Stromatias E, Pfeiffer M, Plana LA, Furber SB, Benosman RB., Front Neurosci 8(), 2014
PMID: 25653580
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
Stefanini F, Neftci EO, Sheik S, Indiveri G., Front Neuroinform 8(), 2014
PMID: 25232314
A robust sound perception model suitable for neuromorphic implementation.
Coath M, Sheik S, Chicca E, Indiveri G, Denham SL, Wennekers T., Front Neurosci 7(), 2013
PMID: 24478621

55 References

Daten bereitgestellt von Europe PubMed Central.

“Spike-based acoustic signal processing chips for detection and localization,”
Abdalla H., Horiuchi T.., 2008
Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey.
Atencio CA, Blake DT, Strata F, Cheung SW, Merzenich MM, Schreiner CE., J. Neurophysiol. 98(4), 2007
PMID: 17699695
Laminar diversity of dynamic sound processing in cat primary auditory cortex.
Atencio CA, Schreiner CE., J. Neurophysiol. 103(1), 2009
PMID: 19864440
A 100x100 pixel silicon retina for gradient extraction with steering filter capabilities and temporal output coding
Barbaro M., Burgi P.-Y., Mortara A., Nussbaum P., Heitger F.., 2002
Synaptic dynamics in analog VLSI.
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003
Point-to-point connectivity between neuromorphic chips using address-events
Boahen K.., 2000
Learning real-world stimuli in a neural network with spike-driven synaptic dynamics.
Brader JM, Senn W, Fusi S., Neural Comput 19(11), 2007
PMID: 17883345
Spike timing-dependent plasticity: a Hebbian learning rule.
Caporale N, Dan Y., Annu. Rev. Neurosci. 31(), 2008
PMID: 18275283
AER EAR: a matched silicon cochlea pair with address event representation interface
Chan V., Liu S.-C., van A.., 2007
A multi-chip pulse-based neuromorphic infrastructure and its application to a model of orientation selectivity
Chicca E., Whatley A., Lichtsteiner P., Dante V., Delbruck T., Del P., Douglas R., Indiveri G.., 2007
Neuromorphic implementation of orientation hypercolumns
Choi T., Merolla P., Arthur J., Boahen K., Shi B.., 2005

Coath M., Mill R., Denham S., Wennekers T.., 2011
A biomorphic digital image sensor
Culurciello E., Etienne-Cummings R., Boahen K.., 2003
PyNN: A Common Interface for Neuronal Network Simulators.
Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P., Front Neuroinform 2(), 2008
PMID: 19194529
“A pulse-coded communications infrastructure for neuromorphic systems,”
Deiss S., Douglas R., Whatley A.., 1999
Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex.
Depireux DA, Simon JZ, Klein DJ, Shamma SA., J. Neurophysiol. 85(3), 2001
PMID: 11247991
“A PCI based high-fanout AER mapper with 2 GiB RAM look-up table, 0.8 (s latency and 66 MHz output event-rate,”
Fasnacht D., Indiveri G.., 2011
“A serial communication infrastructure for multi-chip address event system,”
Fasnacht D., Whatley A., Indiveri G.., 2008
“Real-time silicon implementation of V1 in hierarchical visual information processing,”
Folowosele F., Vogelstein R., Etienne-Cummings R.., 2008
Design of an analogue VLSI model of an active cochlea
Fragnière E., van A., Vittoz E.., 1997
Functional organization of squirrel monkey primary auditory cortex: responses to frequency-modulation sweeps.
Godey B, Atencio CA, Bonham BH, Schreiner CE, Cheung SW., J. Neurophysiol. 94(2), 2005
PMID: 16061492
“AER tools for communications and debugging,”
Gomez-Rodriguez F., Paz R., Linares-Barranco A., Rivas M., Miro L., Vicente S., Jimenez G., Civit A.., 2006
“A SPARC-compatible general purpose address-event processor with 20-bit 10ns-resolution asynchronous sensor data interface in 0.18(m CMOS,”
Hofstaetter M., Schoen P., Posch C.., 2010
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
Indiveri G, Chicca E, Douglas R., IEEE Trans Neural Netw 17(1), 2006
PMID: 16526488
Frontiers in neuromorphic engineering.
Indiveri G, Horiuchi TK., Front Neurosci 5(), 2011
PMID: 22013408
Neuromorphic silicon neuron circuits.
Indiveri G, Linares-Barranco B, Hamilton TJ, van Schaik A, Etienne-Cummings R, Delbruck T, Liu SC, Dudek P, Hafliger P, Renaud S, Schemmel J, Cauwenberghs G, Arthur J, Hynna K, Folowosele F, Saighi S, Serrano-Gotarredona T, Wijekoon J, Wang Y, Boahen K., Front Neurosci 5(), 2011
PMID: 21747754
Modeling spiking neural networks on SpiNNaker
Jin X., Lujan M., Plana L., Davies S., Temple S., Furber S.., 2010
Neuromorphic vision chips
Koch C., Mathur B.., 1996
“An ON/OFF transient imager with event-driven, asynchronous readout,”
Kramer J.., 2002
A five-decade dynamic-range ambient-light-independent calibrated signed-spatial-contrast AER retina with 0.1-ms latency and optional time-to-first-spike mode
Leñero-Bardallo J., Serrano-Gotarredona T., Linares-Barranco B.., 2010
“A 128 (128 120dB 30mW asynchronous vision sensor that responds to relative intensity change,”
Lichtsteiner P., Posch C., Delbruck T.., 2006
Silicon retina with adaptive filtering properties
Liu S.-C.., 1999
Orientation-selective aVLSI spiking neurons.
Liu SC, Kramer J, Indiveri G, Delbruck T, Burg T, Douglas R., Neural Netw 14(6-7), 2001
PMID: 11665759
Linearity of cortical receptive fields measured with natural sounds.
Machens CK, Wehr MS, Zador AM., J. Neurosci. 24(5), 2004
PMID: 14762127
Real-time classification of complex patterns using spike-based learning in neuromorphic VLSI
Mitra S., Fusi S., Indiveri G.., 2009
“State-dependent sensory processing in networks of VLSI spiking neurons,”
Neftci E., Chicca E., Cook M., Indiveri G., Douglas R.., 2010
A systematic method for configuring VLSI networks of spiking neurons.
Neftci E, Chicca E, Indiveri G, Douglas R., Neural Comput 23(10), 2011
PMID: 21732859
“A device mismatch compensation method for VLSI spiking neural networks,”
Neftci E., Indiveri G.., 2010
Dynamic state and parameter estimation applied to neuromorphic systems
Neftci E., Toth B., Indiveri G., Abarbanel H.., 2012
VLSI Implementation of a 2.8 Gevent/s Packet-Based AER Interface with Routing and Event Sorting Functionality.
Scholze S, Schiefer S, Partzsch J, Hartmann S, Mayr CG, Hoppner S, Eisenreich H, Henker S, Vogginger B, Schuffny R., Front Neurosci 5(), 2011
PMID: 22016720
CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.
Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas-Perez M, Delbruck T, Liu SC, Douglas R, Hafliger P, Jimenez-Moreno G, Civit Ballcels A, Serrano-Gotarredona T, Acosta-Jimenez AJ, Linares-Barranco B., IEEE Trans Neural Netw 20(9), 2009
PMID: 19635693
“Systematic configuration and automatic tuning of neuromorphic systems,”
Sheik S., Stefanini F., Neftci E., Chicca E., Indiveri G.., 2011
A unified model of NMDA receptor-dependent bidirectional synaptic plasticity.
Shouval HZ, Bear MF, Cooper LN., Proc. Natl. Acad. Sci. U.S.A. 99(16), 2002
PMID: 12136127
Micropower log-domain filter for electronic cochlea
Toumazou C., Ngarmnil J., Lande T.., 1994
A novel spike distance.
van Rossum MC., Neural Comput 13(4), 2001
PMID: 11255567
“Improved silicon cochlea using compatible lateral bipolar transistors,”
van A., Fragnière E., Vittoz E.., 1996
Improved implementation of the silicon cochlea
Watts L., Kerns D., Lyon R., Mead C.., 1992
“Active bidirectional coupling in a cochlear chip,”
Wen B., Boahen K.., 2006
Synaptic mechanisms of direction selectivity in primary auditory cortex.
Ye CQ, Poo MM, Dan Y, Zhang XH., J. Neurosci. 30(5), 2010
PMID: 20130195
A silicon retina that reproduces signals in the optic nerve.
Zaghloul KA, Boahen K., J Neural Eng 3(4), 2006
PMID: 17124329
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 22347163
PubMed | Europe PMC

Suchen in

Google Scholar