Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives

Menzel G, Krebs C, Diez M, Holtgräwe D, Weisshaar B, Minoche AE, Dohm JC, Himmelbauer H, Schmidt T (2012)
Plant Molecular Biology 78(4-5): 393-405.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Menzel, Gerhard; Krebs, Carmen; Diez, Mercedes; Holtgräwe, DanielaUniBi ; Weisshaar, BerndUniBi ; Minoche, Andre E.; Dohm, Juliane C.; Himmelbauer, Heinz; Schmidt, Thomas
Abstract / Bemerkung
Genome-wide analyses of repetitive DNA suggest a significant impact particularly of transposable elements on genome size and evolution of virtually all eukaryotic organisms. In this study, we analyzed the abundance and diversity of the hAT transposon superfamily of the sugar beet (B. vulgaris) genome, using molecular, bioinformatic and cytogenetic approaches. We identified 81 transposase-coding sequences, three of which are part of structurally intact but nonfunctional hAT transposons (BvhAT), in a B. vulgaris BAC library as well as in whole genome sequencing-derived data sets. Additionally, 116 complete and 497 truncated non-autonomous BvhAT derivatives lacking the transposase gene were in silico-detected. The 116 complete derivatives were subdivided into four BvhATpin groups each characterized by a distinct terminal inverted repeat motif. Both BvhAT and BvhATpin transposons are specific for species of the genus Beta and closely related species, showing a localization on B. vulgaris chromosomes predominantely in euchromatic regions. The lack of any BvhAT transposase function together with the high degree of degeneration observed for the BvhAT and the BvhATpin genomic fraction contrasts with the abundance and activity of autonomous and non-autonomous hAT transposons revealed in other plant species. This indicates a possible genus-specific structural and functional repression of the hAT transposon superfamily during Beta diversification and evolution.
Plant Molecular Biology
Page URI


Menzel G, Krebs C, Diez M, et al. Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology. 2012;78(4-5):393-405.
Menzel, G., Krebs, C., Diez, M., Holtgräwe, D., Weisshaar, B., Minoche, A. E., Dohm, J. C., et al. (2012). Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology, 78(4-5), 393-405. doi:10.1007/s11103-011-9872-z
Menzel, G., Krebs, C., Diez, M., Holtgräwe, D., Weisshaar, B., Minoche, A. E., Dohm, J. C., Himmelbauer, H., and Schmidt, T. (2012). Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology 78, 393-405.
Menzel, G., et al., 2012. Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology, 78(4-5), p 393-405.
G. Menzel, et al., “Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives”, Plant Molecular Biology, vol. 78, 2012, pp. 393-405.
Menzel, G., Krebs, C., Diez, M., Holtgräwe, D., Weisshaar, B., Minoche, A.E., Dohm, J.C., Himmelbauer, H., Schmidt, T.: Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives. Plant Molecular Biology. 78, 393-405 (2012).
Menzel, Gerhard, Krebs, Carmen, Diez, Mercedes, Holtgräwe, Daniela, Weisshaar, Bernd, Minoche, Andre E., Dohm, Juliane C., Himmelbauer, Heinz, and Schmidt, Thomas. “Survey of sugar beet (Beta vulgaris L.) hAT transposons and MITE-like hATpin derivatives”. Plant Molecular Biology 78.4-5 (2012): 393-405.

7 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

DNA methylation of retrotransposons, DNA transposons and genes in sugar beet (Beta vulgaris L.).
Zakrzewski F, Schmidt M, Van Lijsebettens M, Schmidt T., Plant J 90(6), 2017
PMID: 28257158
Evolutionary origin of Rosaceae-specific active non-autonomous hAT elements and their contribution to gene regulation and genomic structural variation.
Wang L, Peng Q, Zhao J, Ren F, Zhou H, Wang W, Liao L, Owiti A, Jiang Q, Han Y., Plant Mol Biol 91(1-2), 2016
PMID: 26941188
Repeat Composition of CenH3-chromatin and H3K9me2-marked heterochromatin in Sugar Beet (Beta vulgaris).
Kowar T, Zakrzewski F, Macas J, Kobližková A, Viehoever P, Weisshaar B, Schmidt T., BMC Plant Biol 16(1), 2016
PMID: 27230558
Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
Nouroz F, Noreen S, Heslop-Harrison JS., Mol Genet Genomics 290(6), 2015
PMID: 26129767
SBMDb: first whole genome putative microsatellite DNA marker database of sugarbeet for bioenergy and industrial applications.
Iquebal MA, Jaiswal S, Angadi UB, Sablok G, Arora V, Kumar S, Rai A, Kumar D., Database (Oxford) 2015(), 2015
PMID: 26647370
The CHH motif in sugar beet satellite DNA: a modulator for cytosine methylation.
Zakrzewski F, Schubert V, Viehoever P, Minoche AE, Dohm JC, Himmelbauer H, Weisshaar B, Schmidt T., Plant J 78(6), 2014
PMID: 24661787
The diversification and activity of hAT transposons in Musa genomes.
Menzel G, Heitkam T, Seibt KM, Nouroz F, Müller-Stoermer M, Heslop-Harrison JS, Schmidt T., Chromosome Res 22(4), 2014
PMID: 25377178

57 References

Daten bereitgestellt von Europe PubMed Central.

De novo genome sequencing and comparative genomics of date palm (Phoenix dactylifera).
Al-Dous EK, George B, Al-Mahmoud ME, Al-Jaber MY, Wang H, Salameh YM, Al-Azwani EK, Chaluvadi S, Pontaroli AC, DeBarry J, Arondel V, Ohlrogge J, Saie IJ, Suliman-Elmeer KM, Bennetzen JL, Kruegger RR, Malek JA., Nat. Biotechnol. 29(6), 2011
PMID: 21623354
Ac-like transposons in populations of wild diploid Triticeae species: comparative analysis of chromosomal distribution.
Altinkut A, Kotseruba V, Kirzhner VM, Nevo E, Raskina O, Belyayev A., Chromosome Res. 14(3), 2006
PMID: 16628501

K, Plant Mol Biol Rep 9(), 1991
Genome-wide analysis of the "cut-and-paste" transposons of grapevine.
Benjak A, Forneck A, Casacuberta JM., PLoS ONE 3(9), 2008
PMID: 18769592

A, Genome Biol Evol 20(), 2009
Transposable elements, gene creation and genome rearrangement in flowering plants.
Bennetzen JL., Curr. Opin. Genet. Dev. 15(6), 2005
PMID: 16219458
GeneWise and Genomewise.
Birney E, Clamp M, Durbin R., Genome Res. 14(5), 2004
PMID: 15123596
Analysis of transposons and repeat composition of the sunflower (Helianthus annuus L.) genome.
Cavallini A, Natali L, Zuccolo A, Giordani T, Jurman I, Ferrillo V, Vitacolonna N, Sarri V, Cattonaro F, Ceccarelli M, Cionini PG, Morgante M., Theor. Appl. Genet. 120(3), 2009
PMID: 19826774
WebLogo: a sequence logo generator.
Crooks GE, Hon G, Chandonia JM, Brenner SE., Genome Res. 14(6), 2004
PMID: 15173120
hAT transposable elements and their derivatives: an analysis in the 12 Drosophila genomes.
de Freitas Ortiz M, Lorenzatto KR, Correa BR, Loreto EL., Genetica 138(6), 2010
PMID: 20127503
A PCR-based assay to detect hAT-like transposon sequences in plants.
De Keukeleire P, De Schepper S, Gielis J, Gerats T., Chromosome Res. 12(2), 2004
PMID: 15053481

C, 2002

SoyTEdb: a comprehensive database of transposable elements in the soybean genome.
Du J, Grant D, Tian Z, Nelson RT, Zhu L, Shoemaker RC, Ma J., BMC Genomics 11(), 2010
PMID: 20163715
Isolation of the transposable maize controlling elements Ac and Ds.
Fedoroff N, Wessler S, Shure M., Cell 35(1), 1983
PMID: 6313225
DNA transposons and the evolution of eukaryotic genomes.
Feschotte C, Pritham EJ., Annu. Rev. Genet. 41(), 2007
PMID: 18076328
Plant transposable elements: where genetics meets genomics.
Feschotte C, Jiang N, Wessler SR., Nat. Rev. Genet. 3(5), 2002
PMID: 11988759
Eukaryotic transposable elements and genome evolution.
Finnegan DJ., Trends Genet. 5(4), 1989
PMID: 2543105
Genome size and the proportion of repeated nucleotide sequence DNA in plants.
Flavell RB, Bennett MD, Smith JB, Smith DB., Biochem. Genet. 12(4), 1974
PMID: 4441361
Identification of an active transposon in intact rice plants.
Fujino K, Sekiguchi H, Kiguchi T., Mol. Genet. Genomics 273(2), 2005
PMID: 15803319
Transcriptional activity of rice autonomous transposable element Dart.
Fujino K, Matsuda Y, Sekiguchi H., J. Plant Physiol. 166(14), 2009
PMID: 19410335

TA, Nucleic Acids Symp Ser 41(), 1999
Structural analysis of Tam3, a transposable element from Antirrhinum majus, reveals homologies to the Ac element from maize.
Hehl R, Nacken WK, Krause A, Saedler H, Sommer H., Plant Mol. Biol. 16(2), 1991
PMID: 1654157
The transposable element landscape of the model legume Lotus japonicus.
Holligan D, Zhang X, Jiang N, Pritham EJ, Wessler SR., Genetics 174(4), 2006
PMID: 17028332
Identification of a high frequency transposon induced by tissue culture, nDaiZ, a member of the hAT family in rice.
Huang J, Zhang K, Shen Y, Huang Z, Li M, Tang D, Gu M, Cheng Z., Genomics 93(3), 2008
PMID: 19071208
B chromosomes and genome size in flowering plants.
Trivers R, Burt A, Palestis BG., Genome 47(1), 2004
PMID: 15060596

R, 2002
Transcription of transposable element Activator (Ac) of Zea mays L.
Kunze R, Stochaj U, Laufs J, Starlinger P., EMBO J. 6(6), 1987
PMID: 16453772
Construction and characterization of a sugar beet (Beta vulgaris) fosmid library.
Lange C, Holtgrawe D, Schulz B, Weisshaar B, Himmelbauer H., Genome 51(11), 2008
PMID: 18956027


JM, Plant Mol Biol Rep 22(), 2004
Mobilization and evolutionary history of miniature inverted-repeat transposable elements (MITEs) in Beta vulgaris L.
Menzel G, Dechyeva D, Keller H, Lange C, Himmelbauer H, Schmidt T., Chromosome Res. 14(8), 2006
PMID: 17171577
Diversity of a complex centromeric satellite and molecular characterization of dispersed sequence families in sugar beet (Beta vulgaris).
Menzel G, Dechyeva D, Wenke T, Holtgrawe D, Weisshaar B, Schmidt T., Ann. Bot. 102(4), 2008
PMID: 18682437
Identification of active transposon dTok, a member of the hAT family, in rice.
Moon S, Jung KH, Lee DE, Jiang WZ, Koh HJ, Heu MH, Lee DS, Suh HS, An G., Plant Cell Physiol. 47(11), 2006
PMID: 16990289
Structure and evolution of the hAT transposon superfamily.
Rubin E, Lithwick G, Levy AA., Genetics 158(3), 2001
PMID: 11454746
Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics.
Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW., Proc. Natl. Acad. Sci. U.S.A. 81(24), 1984
PMID: 6096873

J, 1989

T, Genome 34(), 1991

T, 2000
MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.
Tamura K, Dudley J, Nei M, Kumar S., Mol. Biol. Evol. 24(8), 2007
PMID: 17488738
Transcriptional activity of transposable elements in maize.
Vicient CM., BMC Genomics 11(), 2010
PMID: 20973992
Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum.
Vicient CM, Suoniemi A, Anamthawat-Jonsson K, Tanskanen J, Beharav A, Nevo E, Schulman AH., Plant Cell 11(9), 1999
PMID: 10488242
Genome-wide distribution of transposed Dissociation elements in maize.
Vollbrecht E, Duvick J, Schares JP, Ahern KR, Deewatthanawong P, Xu L, Conrad LJ, Kikuchi K, Kubinec TA, Hall BD, Weeks R, Unger-Wallace E, Muszynski M, Brendel VP, Brutnell TP., Plant Cell 22(6), 2010
PMID: 20581308
A unified classification system for eukaryotic transposable elements.
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH., Nat. Rev. Genet. 8(12), 2007
PMID: 17984973
A rice Tc1/mariner-like element transposes in yeast.
Yang G, Weil CF, Wessler SR., Plant Cell 18(10), 2006
PMID: 17041148


Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®


PMID: 22246381
PubMed | Europe PMC

Suchen in

Google Scholar