The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia

Fazli M, O'Connell A, Nilsson M, Niehaus K, Dow JM, Givskov M, Ryan RP, Tolker-Nielsen T (2011)
Molecular Microbiology 82(2): 327-341.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Fazli, Mustafa; O'Connell, Aileen; Nilsson, Martin; Niehaus, KarstenUniBi; Dow, J. Maxwell; Givskov, Michael; Ryan, Robert P.; Tolker-Nielsen, Tim
Abstract / Bemerkung
Burkholderia cenocepacia is an opportunistic respiratory pathogen that can cause severe infections in immune-compromised individuals and is associated with poor prognosis for patients suffering from cystic fibrosis. The second messenger cyclic diguanosine monophosphate (c-di-GMP) has been shown to control a wide range of functions in bacteria, but little is known about these regulatory mechanisms in B. cenocepacia. Here we investigated the role that c-di-GMP plays in the regulation of biofilm formation and virulence in B. cenocepacia. Elevated intracellular levels of c-di-GMP promoted wrinkly colony, pellicle and biofilm formation in B. cenocepacia. A screen for transposon mutants unable to respond to elevated levels of c-di-GMP led to the identification of the mutant bcam1349 that did not display increased biofilm and pellicle formation with excessive c-di-GMP levels, and displayed a biofilm defect with physiological c-di-GMP levels. The bcam1349 gene is predicted to encode a transcriptional regulator of the CRP/FNR superfamily. Analyses of purified Bcam1349 protein and truncations demonstrated that it binds c-di-GMP in vitro. The Bcam1349 protein was shown to regulate the production of a number of components, including cellulose and fimbriae. It was demonstrated that the Bcam1349 protein binds to the promoter region of the cellulose synthase genes, and that this binding is enhanced by the presence of c-di-GMP. The bcam1349 mutant showed reduced virulence in a Galleria mellonella wax moth larvae infection model. Taken together, these findings suggest that the Bcam1349 protein is a transcriptional regulator that binds c-di-GMP and regulates biofilm formation and virulence in B. cenocepacia in response to the level of c-di-GMP.
Molecular Microbiology
Page URI


Fazli M, O'Connell A, Nilsson M, et al. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology. 2011;82(2):327-341.
Fazli, M., O'Connell, A., Nilsson, M., Niehaus, K., Dow, J. M., Givskov, M., Ryan, R. P., et al. (2011). The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology, 82(2), 327-341. doi:10.1111/j.1365-2958.2011.07814.x
Fazli, Mustafa, O'Connell, Aileen, Nilsson, Martin, Niehaus, Karsten, Dow, J. Maxwell, Givskov, Michael, Ryan, Robert P., and Tolker-Nielsen, Tim. 2011. “The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia”. Molecular Microbiology 82 (2): 327-341.
Fazli, M., O'Connell, A., Nilsson, M., Niehaus, K., Dow, J. M., Givskov, M., Ryan, R. P., and Tolker-Nielsen, T. (2011). The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology 82, 327-341.
Fazli, M., et al., 2011. The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology, 82(2), p 327-341.
M. Fazli, et al., “The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia”, Molecular Microbiology, vol. 82, 2011, pp. 327-341.
Fazli, M., O'Connell, A., Nilsson, M., Niehaus, K., Dow, J.M., Givskov, M., Ryan, R.P., Tolker-Nielsen, T.: The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia. Molecular Microbiology. 82, 327-341 (2011).
Fazli, Mustafa, O'Connell, Aileen, Nilsson, Martin, Niehaus, Karsten, Dow, J. Maxwell, Givskov, Michael, Ryan, Robert P., and Tolker-Nielsen, Tim. “The CRP/FNR family protein Bcam1349 is a c-di-GMP effector that regulates biofilm formation in the respiratory pathogen Burkholderia cenocepacia”. Molecular Microbiology 82.2 (2011): 327-341.

65 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Molecular aspects of bacterial nanocellulose biosynthesis.
Jacek P, Dourado F, Gama M, Bielecki S., Microb Biotechnol 12(4), 2019
PMID: 30883026
AmrZ and FleQ Co-regulate Cellulose Production in Pseudomonas syringae pv. Tomato DC3000.
Pérez-Mendoza D, Felipe A, Ferreiro MD, Sanjuán J, Gallegos MT., Front Microbiol 10(), 2019
PMID: 31057500
Key Players and Individualists of Cyclic-di-GMP Signaling in Burkholderia cenocepacia.
Richter AM, Fazli M, Schmid N, Shilling R, Suppiger A, Givskov M, Eberl L, Tolker-Nielsen T., Front Microbiol 9(), 2018
PMID: 30687272
Cyclic di-GMP integrates functionally divergent transcription factors into a regulation pathway for antioxidant defense.
Li W, Hu L, Xie Z, Xu H, Li M, Cui T, He ZG., Nucleic Acids Res 46(14), 2018
PMID: 29982829
Cyclic di-GMP: second messenger extraordinaire.
Jenal U, Reinders A, Lori C., Nat Rev Microbiol 15(5), 2017
PMID: 28163311
Regulation of Burkholderia cenocepacia biofilm formation by RpoN and the c-di-GMP effector BerB.
Fazli M, Rybtke M, Steiner E, Weidel E, Berthelsen J, Groizeleau J, Bin W, Zhi BZ, Yaming Z, Kaever V, Givskov M, Hartmann RW, Eberl L, Tolker-Nielsen T., Microbiologyopen 6(4), 2017
PMID: 28419759
AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production.
Schäper S, Steinchen W, Krol E, Altegoer F, Skotnicka D, Søgaard-Andersen L, Bange G, Becker A., Proc Natl Acad Sci U S A 114(24), 2017
PMID: 28559336
The Streptomyces master regulator BldD binds c-di-GMP sequentially to create a functional BldD2-(c-di-GMP)4 complex.
Schumacher MA, Zeng W, Findlay KC, Buttner MJ, Brennan RG, Tschowri N., Nucleic Acids Res 45(11), 2017
PMID: 28449057
A Symphony of Cyclases: Specificity in Diguanylate Cyclase Signaling.
Dahlstrom KM, O'Toole GA., Annu Rev Microbiol 71(), 2017
PMID: 28645224
BsmR degrades c-di-GMP to modulate biofilm formation of nosocomial pathogen Stenotrophomonas maltophilia.
Liu W, Tian XQ, Wei JW, Ding LL, Qian W, Liu Z, Wang FF., Sci Rep 7(1), 2017
PMID: 28680041
A novel c-di-GMP binding domain in glycosyltransferase BgsA is responsible for the synthesis of a mixed-linkage β-glucan.
Pérez-Mendoza D, Bertinetti D, Lorenz R, Gallegos MT, Herberg FW, Sanjuán J., Sci Rep 7(1), 2017
PMID: 28827694
Diversity of Cyclic Di-GMP-Binding Proteins and Mechanisms.
Chou SH, Galperin MY., J Bacteriol 198(1), 2016
PMID: 26055114
Exploiting the commons: cyclic diguanylate regulation of bacterial exopolysaccharide production.
Pérez-Mendoza D, Sanjuán J., Curr Opin Microbiol 30(), 2016
PMID: 26773798
A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus.
Skotnicka D, Smaldone GT, Petters T, Trampari E, Liang J, Kaever V, Malone JG, Singer M, Søgaard-Andersen L., PLoS Genet 12(5), 2016
PMID: 27214040
Interbacterial signaling via Burkholderia contact-dependent growth inhibition system proteins.
Garcia EC, Perault AI, Marlatt SA, Cotter PA., Proc Natl Acad Sci U S A 113(29), 2016
PMID: 27335458
Sustained sensing as an emerging principle in second messenger signaling systems.
Orr MW, Galperin MY, Lee VT., Curr Opin Microbiol 34(), 2016
PMID: 27700990
In-Frame and Unmarked Gene Deletions in Burkholderia cenocepacia via an Allelic Exchange System Compatible with Gateway Technology.
Fazli M, Harrison JJ, Gambino M, Givskov M, Tolker-Nielsen T., Appl Environ Microbiol 81(11), 2015
PMID: 25795676
Capture compound mass spectrometry--a powerful tool to identify novel c-di-GMP effector proteins.
Laventie BJ, Nesper J, Ahrné E, Glatter T, Schmidt A, Jenal U., J Vis Exp (97), 2015
PMID: 25867682
Multiple diguanylate cyclase-coordinated regulation of pyoverdine synthesis in Pseudomonas aeruginosa.
Chen Y, Yuan M, Mohanty A, Yam JK, Liu Y, Chua SL, Nielsen TE, Tolker-Nielsen T, Givskov M, Cao B, Yang L., Environ Microbiol Rep 7(3), 2015
PMID: 25683454
The Cyclic AMP-Vfr Signaling Pathway in Pseudomonas aeruginosa Is Inhibited by Cyclic Di-GMP.
Almblad H, Harrison JJ, Rybtke M, Groizeleau J, Givskov M, Parsek MR, Tolker-Nielsen T., J Bacteriol 197(13), 2015
PMID: 25897033
Global transcriptional analysis of Burkholderia pseudomallei high and low biofilm producers reveals insights into biofilm production and virulence.
Chin CY, Hara Y, Ghazali AK, Yap SJ, Kong C, Wong YC, Rozali N, Koh SF, Hoh CC, Puthucheary SD, Nathan S., BMC Genomics 16(), 2015
PMID: 26092034
Bacterial rotary export ATPases are allosterically regulated by the nucleotide second messenger cyclic-di-GMP.
Trampari E, Stevenson CE, Little RH, Wilhelm T, Lawson DM, Malone JG., J Biol Chem 290(40), 2015
PMID: 26265469
Cyclic di-AMP impairs potassium uptake mediated by a cyclic di-AMP binding protein in Streptococcus pneumoniae.
Bai Y, Yang J, Zarrella TM, Zhang Y, Metzger DW, Bai G., J Bacteriol 196(3), 2014
PMID: 24272783
BrlR from Pseudomonas aeruginosa is a c-di-GMP-responsive transcription factor.
Chambers JR, Liao J, Schurr MJ, Sauer K., Mol Microbiol 92(3), 2014
PMID: 24612375
Regulation of biofilm formation in Pseudomonas and Burkholderia species.
Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T., Environ Microbiol 16(7), 2014
PMID: 24592823
The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi.
Novak EA, Sultan SZ, Motaleb MA., Front Cell Infect Microbiol 4(), 2014
PMID: 24822172
Engineering of Bacillus subtilis strains to allow rapid characterization of heterologous diguanylate cyclases and phosphodiesterases.
Gao X, Dong X, Subramanian S, Matthews PM, Cooper CA, Kearns DB, Dann CE., Appl Environ Microbiol 80(19), 2014
PMID: 25085482
Tetrameric c-di-GMP mediates effective transcription factor dimerization to control Streptomyces development.
Tschowri N, Schumacher MA, Schlimpert S, Chinnam NB, Findlay KC, Brennan RG, Buttner MJ., Cell 158(5), 2014
PMID: 25171413
Gram-negative bacteria can also form pellicles.
Armitano J, Méjean V, Jourlin-Castelli C., Environ Microbiol Rep 6(6), 2014
PMID: 25756106
Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis.
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO., Chem Soc Rev 42(1), 2013
PMID: 23023210
Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose.
Zorraquino V, García B, Latasa C, Echeverz M, Toledo-Arana A, Valle J, Lasa I, Solano C., J Bacteriol 195(3), 2013
PMID: 23161026
Comparative transcriptomic analysis of the Burkholderia cepacia tyrosine kinase bceF mutant reveals a role in tolerance to stress, biofilm formation, and virulence.
Ferreira AS, Silva IN, Oliveira VH, Becker JD, Givskov M, Ryan RP, Fernandes F, Moreira LM., Appl Environ Microbiol 79(9), 2013
PMID: 23435894
Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.
Römling U, Galperin MY, Gomelsky M., Microbiol Mol Biol Rev 77(1), 2013
PMID: 23471616
The immunosuppressive drug azathioprine inhibits biosynthesis of the bacterial signal molecule cyclic-di-GMP by interfering with intracellular nucleotide pool availability.
Antoniani D, Rossi E, Rinaldo S, Bocci P, Lolicato M, Paiardini A, Raffaelli N, Cutruzzolà F, Landini P., Appl Microbiol Biotechnol 97(16), 2013
PMID: 23584245
Biofilms 2012: new discoveries and significant wrinkles in a dynamic field.
Haussler S, Fuqua C., J Bacteriol 195(13), 2013
PMID: 23625847
Clearance of Pseudomonas aeruginosa foreign-body biofilm infections through reduction of the cyclic Di-GMP level in the bacteria.
Christensen LD, van Gennip M, Rybtke MT, Wu H, Chiang WC, Alhede M, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T., Infect Immun 81(8), 2013
PMID: 23690403
Two quorum sensing systems control biofilm formation and virulence in members of the Burkholderia cepacia complex.
Suppiger A, Schmid N, Aguilar C, Pessi G, Eberl L., Virulence 4(5), 2013
PMID: 23799665
Response of Burkholderia cenocepacia H111 to micro-oxia.
Pessi G, Braunwalder R, Grunau A, Omasits U, Ahrens CH, Eberl L., PLoS One 8(9), 2013
PMID: 24023794
Transcriptional activation of the mrkA promoter of the Klebsiella pneumoniae type 3 fimbrial operon by the c-di-GMP-dependent MrkH protein.
Yang J, Wilksch JJ, Tan JW, Hocking DM, Webb CT, Lithgow T, Robins-Browne RM, Strugnell RA., PLoS One 8(11), 2013
PMID: 24244411
Dissecting novel virulent determinants in the Burkholderia cepacia complex.
Tegos GP, Haynes MK, Schweizer HP., Virulence 3(3), 2012
PMID: 22546904
Fluorescence-based reporter for gauging cyclic di-GMP levels in Pseudomonas aeruginosa.
Rybtke MT, Borlee BR, Murakami K, Irie Y, Hentzer M, Nielsen TE, Givskov M, Parsek MR, Tolker-Nielsen T., Appl Environ Microbiol 78(15), 2012
PMID: 22582064
Sensing the messenger: the diverse ways that bacteria signal through c-di-GMP.
Krasteva PV, Giglio KM, Sondermann H., Protein Sci 21(7), 2012
PMID: 22593024

61 References

Daten bereitgestellt von Europe PubMed Central.

Genetic data indicate that proteins containing the GGDEF domain possess diguanylate cyclase activity.
Ausmees N, Mayer R, Weinhouse H, Volman G, Amikam D, Benziman M, Lindberg M., FEMS Microbiol. Lett. 204(1), 2001
PMID: 11682196
New concepts of the pathogenesis of cystic fibrosis lung disease.
Boucher RC., Eur. Respir. J. 23(1), 2004
PMID: 14738247
Biofilms: the matrix revisited.
Branda SS, Vik S, Friedman L, Kolter R., Trends Microbiol. 13(1), 2005
PMID: 15639628
Biofilms in chronic infections - a matter of opportunity - monospecies biofilms in multispecies infections.
Burmolle M, Thomsen TR, Fazli M, Dige I, Christensen L, Homoe P, Tvede M, Nyvad B, Tolker-Nielsen T, Givskov M, Moser C, Kirketerp-Moller K, Johansen HK, Hoiby N, Jensen PO, Sorensen SJ, Bjarnsholt T., FEMS Immunol. Med. Microbiol. 59(3), 2010
PMID: 20602635
Burkholderia cepacia complex species: health hazards and biotechnological potential.
Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P., Trends Microbiol. 14(6), 2006
PMID: 16684604
The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris.
Chin KH, Lee YC, Tu ZL, Chen CH, Tseng YH, Yang JM, Ryan RP, McCarthy Y, Dow JM, Wang AH, Chou SH., J. Mol. Biol. 396(3), 2009
PMID: 20004667
Bacterial biofilms: a common cause of persistent infections.
Costerton JW, Stewart PS, Greenberg EP., Science 284(5418), 1999
PMID: 10334980
Cyclic di-GMP as a bacterial second messenger.
D'Argenio DA, Miller SI., Microbiology (Reading, Engl.) 150(Pt 8), 2004
PMID: 15289546
Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression
Ditta, Plasmid 12(), 1985
Second messenger-mediated spatiotemporal control of protein degradation regulates bacterial cell cycle progression.
Duerig A, Abel S, Folcher M, Nicollier M, Schwede T, Amiot N, Giese B, Jenal U., Genes Dev. 23(1), 2009
PMID: 19136627
In vivo and in vitro stability of the broad-host-range cloning vector pBBR1MCS in six Brucella species.
Elzer PH, Kovach ME, Phillips RW, Robertson GT, Peterson KM, Roop RM 2nd., Plasmid 33(1), 1995
PMID: 7753908
Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms.
Friedman L, Kolter R., Mol. Microbiol. 51(3), 2004
PMID: 14731271
Characterization of starvation-induced dispersion in Pseudomonas putida biofilms.
Gjermansen M, Ragas P, Sternberg C, Molin S, Tolker-Nielsen T., Environ. Microbiol. 7(6), 2005
PMID: 15892708
Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal.
Gjermansen M, Ragas P, Tolker-Nielsen T., FEMS Microbiol. Lett. 265(2), 2006
PMID: 17054717
Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms.
Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T., Mol. Microbiol. 75(4), 2009
PMID: 19602146
Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium.
Grantcharova N, Peters V, Monteiro C, Zakikhany K, Romling U., J. Bacteriol. 192(2), 2009
PMID: 19897646
Evolving concepts in biofilm infections.
Hall-Stoodley L, Stoodley P., Cell. Microbiol. 11(7), 2009
PMID: 19374653
Principles of c-di-GMP signalling in bacteria.
Hengge R., Nat. Rev. Microbiol. 7(4), 2009
PMID: 19287449
Cyclic-di-GMP reaches out into the bacterial RNA world.
Hengge R., Sci Signal 3(149), 2010
PMID: 21098727
Quantification of biofilm structures by the novel computer program COMSTAT.
Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersboll BK, Molin S., Microbiology (Reading, Engl.) 146 ( Pt 10)(), 2000
PMID: 11021916
A chemosensory system that regulates biofilm formation through modulation of cyclic diguanylate levels.
Hickman JW, Tifrea DF, Harwood CS., Proc. Natl. Acad. Sci. U.S.A. 102(40), 2005
PMID: 16186483
Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111.
Huber B, Riedel K, Kothe M, Givskov M, Molin S, Eberl L., Mol. Microbiol. 46(2), 2002
PMID: 12406218
Identification of a novel virulence factor in Burkholderia cenocepacia H111 required for efficient slow killing of Caenorhabditis elegans.
Huber B, Feldmann F, Kothe M, Vandamme P, Wopperer J, Riedel K, Eberl L., Infect. Immun. 72(12), 2004
PMID: 15557647
Pseudomonas cepacia infection in cystic fibrosis: an emerging problem.
Isles A, Maclusky I, Corey M, Gold R, Prober C, Fleming P, Levison H., J. Pediatr. 104(2), 1984
PMID: 6420530
Burkholderia cenocepacia and Burkholderia multivorans: influence on survival in cystic fibrosis.
Jones AM, Dodd ME, Govan JR, Barcus V, Doherty CJ, Morris J, Webb AK., Thorax 59(11), 2004
PMID: 15516469
Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes.
Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM 2nd, Peterson KM., Gene 166(1), 1995
PMID: 8529885
Vibrio cholerae VpsT regulates matrix production and motility by directly sensing cyclic di-GMP.
Krasteva PV, Fong JC, Shikuma NJ, Beyhan S, Navarro MV, Yildiz FH, Sondermann H., Science 327(5967), 2010
PMID: 20150502
A novel two-component system controls the expression of Pseudomonas aeruginosa fimbrial cup genes.
Kulasekara HD, Ventre I, Kulasekara BR, Lazdunski A, Filloux A, Lory S., Mol. Microbiol. 55(2), 2005
PMID: 15659157
Analysis of Pseudomonas aeruginosa diguanylate cyclases and phosphodiesterases reveals a role for bis-(3'-5')-cyclic-GMP in virulence.
Kulasakara H, Lee V, Brencic A, Liberati N, Urbach J, Miyata S, Lee DG, Neely AN, Hyodo M, Hayakawa Y, Ausubel FM, Lory S., Proc. Natl. Acad. Sci. U.S.A. 103(8), 2006
PMID: 16477007
An allosteric self-splicing ribozyme triggered by a bacterial second messenger.
Lee ER, Baker JL, Weinberg Z, Sudarsan N, Breaker RR., Science 329(5993), 2010
PMID: 20705859
Disproportionate distribution of Burkholderia cepacia complex species and transmissibility in cystic fibrosis
LiPuma, Am J of Respir Crit Care Med 164(), 2001
A sensor kinase recognizing the cell-cell signal BDSF (cis-2-dodecenoic acid) regulates virulence in Burkholderia cenocepacia.
McCarthy Y, Yang L, Twomey KB, Sass A, Tolker-Nielsen T, Mahenthiralingam E, Dow JM, Ryan RP., Mol. Microbiol. 77(5), 2010
PMID: 20624216
Burkholderia cepacia complex bacteria: opportunistic pathogens with important natural biology.
Mahenthiralingam E, Baldwin A, Dowson CG., J. Appl. Microbiol. 104(6), 2008
PMID: 18217926
Adaptive radiation in a heterogeneous environment.
Rainey PB, Travisano M., Nature 394(6688), 1998
PMID: 9665128
Prevailing concepts of c-di-GMP signaling.
Romling U, Simm R., Contrib Microbiol 16(), 2009
PMID: 19494585
Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa.
Ryan RP, Fouhy Y, Garcia BF, Watt SA, Niehaus K, Yang L, Tolker-Nielsen T, Dow JM., Mol. Microbiol. 68(1), 2008
PMID: 18312265
HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa.
Ryan RP, Lucey J, O'Donovan K, McCarthy Y, Yang L, Tolker-Nielsen T, Dow JM., Environ. Microbiol. 11(5), 2008
PMID: 19170727

Sambrook, 1989
GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility.
Simm R, Morr M, Kader A, Nimtz M, Romling U., Mol. Microbiol. 53(4), 2004
PMID: 15306016
Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose
Spiers, Mol Microbiol 1(), 2003
Growing and analyzing biofilms in flow cells.
Sternberg C, Tolker-Nielsen T., Curr Protoc Microbiol Chapter 1(), 2006
PMID: 18770573
Control of formation and cellular detachment from Shewanella oneidensis MR-1 biofilms by cyclic di-GMP.
Thormann KM, Duttler S, Saville RM, Hyodo M, Shukla S, Hayakawa Y, Spormann AM., J. Bacteriol. 188(7), 2006
PMID: 16547056
Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing.
Tuckerman JR, Gonzalez G, Gilles-Gonzalez MA., J. Mol. Biol. 407(5), 2011
PMID: 21320509

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 21883527
PubMed | Europe PMC

Suchen in

Google Scholar