Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters

Seewald MJ, Ellinghaus P, Kassner A, Stork I, Barg M, Niebrügge S, Golz S, Summer H, Zweigerdt R, Schräder EM, Feicht S, et al. (2009)
Physiological Genomics 38(1): 7-15.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Seewald, Michael J.; Ellinghaus, Peter; Kassner, Astrid; Stork, Ines; Barg, Martina; Niebrügge, Sylvia; Golz, Stefan; Summer, Holger; Zweigerdt, Robert; Schräder, Eva MariaUniBi; Feicht, Samantha; Jaquet, Kornelia
Alle
Abstract / Bemerkung
Cardiomyocytes derived from pluripotent embryonic stem cells (ESC) have the advantage of providing a source for standardized cell cultures. However, little is known on the regulation of the genome during differentiation of ESC to cardiomyocytes. Here, we characterize the transcriptome of the mouse ESC line CM7/1 during differentiation into beating cardiomyocytes and compare the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium. We observe that the cardiac gene expression pattern of fully differentiated CM7/1-ESC is highly similar to adult primary cardiomyocytes and murine myocardium, respectively. This finding is underlined by demonstrating pharmacological effects of catecholamines and endothelin- 1 on ESC-derived cardiomyocytes. Furthermore, we monitor the temporal changes in gene expression pattern during ESC differentiation with a special focus on transcription factors involved in cardiomyocyte differentiation. Thus, CM7/1-ESC-derived cardiomyocytes are a promising new tool for functional studies of cardiomyocytes in vitro and for the analysis of the transcription factor network regulating pluripotency and differentiation to cardiomyocytes.
Erscheinungsjahr
2009
Zeitschriftentitel
Physiological Genomics
Band
38
Ausgabe
1
Seite(n)
7-15
ISSN
1094-8341
eISSN
1531-2267
Page URI
https://pub.uni-bielefeld.de/record/2442892

Zitieren

Seewald MJ, Ellinghaus P, Kassner A, et al. Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiological Genomics. 2009;38(1):7-15.
Seewald, M. J., Ellinghaus, P., Kassner, A., Stork, I., Barg, M., Niebrügge, S., Golz, S., et al. (2009). Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiological Genomics, 38(1), 7-15. https://doi.org/10.1152/physiolgenomics.90287.2008
Seewald, Michael J., Ellinghaus, Peter, Kassner, Astrid, Stork, Ines, Barg, Martina, Niebrügge, Sylvia, Golz, Stefan, et al. 2009. “Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters”. Physiological Genomics 38 (1): 7-15.
Seewald, M. J., Ellinghaus, P., Kassner, A., Stork, I., Barg, M., Niebrügge, S., Golz, S., Summer, H., Zweigerdt, R., Schräder, E. M., et al. (2009). Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiological Genomics 38, 7-15.
Seewald, M.J., et al., 2009. Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiological Genomics, 38(1), p 7-15.
M.J. Seewald, et al., “Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters”, Physiological Genomics, vol. 38, 2009, pp. 7-15.
Seewald, M.J., Ellinghaus, P., Kassner, A., Stork, I., Barg, M., Niebrügge, S., Golz, S., Summer, H., Zweigerdt, R., Schräder, E.M., Feicht, S., Jaquet, K., Reis, S., Körfer, R., Milting, H.: Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters. Physiological Genomics. 38, 7-15 (2009).
Seewald, Michael J., Ellinghaus, Peter, Kassner, Astrid, Stork, Ines, Barg, Martina, Niebrügge, Sylvia, Golz, Stefan, Summer, Holger, Zweigerdt, Robert, Schräder, Eva Maria, Feicht, Samantha, Jaquet, Kornelia, Reis, Stephanie, Körfer, Reiner, and Milting, Hendrik. “Genomic profiling of developing cardiomyocytes from recombinant murine embryonic stem cells reveals regulation of transcription factor clusters”. Physiological Genomics 38.1 (2009): 7-15.

6 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hypoxia Signaling Pathway in Stem Cell Regulation: Good and Evil.
Huang X, Trinh T, Aljoufi A, Broxmeyer HE., Curr Stem Cell Rep 4(2), 2018
PMID: 31275803
Platelet endothelial cell adhesion molecule-1 mediates endothelial-cardiomyocyte communication and regulates cardiac function.
McCormick ME, Collins C, Makarewich CA, Chen Z, Rojas M, Willis MS, Houser SR, Tzima E., J Am Heart Assoc 4(1), 2015
PMID: 25600142
Gli2 and MEF2C activate each other's expression and function synergistically during cardiomyogenesis in vitro.
Voronova A, Al Madhoun A, Fischer A, Shelton M, Karamboulas C, Skerjanc IS., Nucleic Acids Res 40(8), 2012
PMID: 22199256
Global gene expression analysis in nonfailing and failing myocardium pre- and postpulsatile and nonpulsatile ventricular assist device support.
Schwientek P, Ellinghaus P, Steppan S, D'Urso D, Seewald M, Kassner A, Cebulla R, Schulte-Eistrup S, Morshuis M, Röfe D, El Banayosy A, Körfer R, Milting H., Physiol Genomics 42(3), 2010
PMID: 20460602
Modulation of calcium-activated potassium channels induces cardiogenesis of pluripotent stem cells and enrichment of pacemaker-like cells.
Kleger A, Seufferlein T, Malan D, Tischendorf M, Storch A, Wolheim A, Latz S, Protze S, Porzner M, Proepper C, Brunner C, Katz SF, Varma Pusapati G, Bullinger L, Franz WM, Koehntop R, Giehl K, Spyrantis A, Wittekindt O, Lin Q, Zenke M, Fleischmann BK, Wartenberg M, Wobus AM, Boeckers TM, Liebau S., Circulation 122(18), 2010
PMID: 20956206

55 References

Daten bereitgestellt von Europe PubMed Central.

Beta-adrenoceptor subtype dependence of chronotropy in mouse embryonic stem cell-derived cardiomyocytes.
Ali NN, Xu X, Brito-Martins M, Poole-Wilson PA, Harding SE, Fuller SJ., Basic Res. Cardiol. 99(6), 2004
PMID: 15365729
Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes.
Beqqali A, Kloots J, Ward-van Oostwaard D, Mummery C, Passier R., Stem Cells 24(8), 2006
PMID: 16675594
Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation.
Brandenberger R, Wei H, Zhang S, Lei S, Murage J, Fisk GJ, Li Y, Xu C, Fang R, Guegler K, Rao MS, Mandalam R, Lebkowski J, Stanton LW., Nat. Biotechnol. 22(6), 2004
PMID: 15146197

AUTHOR UNKNOWN, 0

AUTHOR UNKNOWN, 0
Cellular cardiomyoplasty: improvement of left ventricular function correlates with the release of cardioactive cytokines.
Ebelt H, Jungblut M, Zhang Y, Kubin T, Kostin S, Technau A, Oustanina S, Niebrugge S, Lehmann J, Werdan K, Braun T., Stem Cells 25(1), 2006
PMID: 16973829
The Foxa family of transcription factors in development and metabolism.
Friedman JR, Kaestner KH., Cell. Mol. Life Sci. 63(19-20), 2006
PMID: 16909212
Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells.
Gerecht-Nir S, Dazard JE, Golan-Mashiach M, Osenberg S, Botvinnik A, Amariglio N, Domany E, Rechavi G, Givol D, Itskovitz-Eldor J., Dev. Dyn. 232(2), 2005
PMID: 15614775
Contractile responses of isolated adult rat and rabbit cardiac myocytes to isoproterenol and calcium.
Harding SE, Vescovo G, Kirby M, Jones SM, Gurden J, Poole-Wilson PA., J. Mol. Cell. Cardiol. 20(7), 1988
PMID: 3172250
Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial.
Janssens S, Dubois C, Bogaert J, Theunissen K, Deroose C, Desmet W, Kalantzi M, Herbots L, Sinnaeve P, Dens J, Maertens J, Rademakers F, Dymarkowski S, Gheysens O, Van Cleemput J, Bormans G, Nuyts J, Belmans A, Mortelmans L, Boogaerts M, Van de Werf F., Lancet 367(9505), 2006
PMID: 16413875
Engraftment of engineered ES cell-derived cardiomyocytes but not BM cells restores contractile function to the infarcted myocardium.
Kolossov E, Bostani T, Roell W, Breitbach M, Pillekamp F, Nygren JM, Sasse P, Rubenchik O, Fries JW, Wenzel D, Geisen C, Xia Y, Lu Z, Duan Y, Kettenhofen R, Jovinge S, Bloch W, Bohlen H, Welz A, Hescheler J, Jacobsen SE, Fleischmann BK., J. Exp. Med. 203(10), 2006
PMID: 16954371
GATA4 transcription factor is required for ventral morphogenesis and heart tube formation.
Kuo CT, Morrisey EE, Anandappa R, Sigrist K, Lu MM, Parmacek MS, Soudais C, Leiden JM., Genes Dev. 11(8), 1997
PMID: 9136932
The initiation of liver development is dependent on Foxa transcription factors.
Lee CS, Friedman JR, Fulmer JT, Kaestner KH., Nature 435(7044), 2005
PMID: 15959514
Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells.
Liu Y, Asakura M, Inoue H, Nakamura T, Sano M, Niu Z, Chen M, Schwartz RJ, Schneider MD., Proc. Natl. Acad. Sci. U.S.A. 104(10), 2007
PMID: 17360443
The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells.
Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH., Nat. Genet. 38(4), 2006
PMID: 16518401
Endoderm and heart development.
Lough J, Sugi Y., Dev. Dyn. 217(4), 2000
PMID: 10767078
Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2-5.
Lyons I, Parsons LM, Hartley L, Li R, Andrews JE, Robb L, Harvey RP., Genes Dev. 9(13), 1995
PMID: 7628699
Cardiomyocytes can be generated from marrow stromal cells in vitro.
Makino S, Fukuda K, Miyoshi S, Konishi F, Kodama H, Pan J, Sano M, Takahashi T, Hori S, Abe H, Hata J, Umezawa A, Ogawa S., J. Clin. Invest. 103(5), 1999
PMID: 10074487
Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial.
Meyer GP, Wollert KC, Lotz J, Steffens J, Lippolt P, Fichtner S, Hecker H, Schaefer A, Arseniev L, Hertenstein B, Ganser A, Drexler H., Circulation 113(10), 2006
PMID: 16520413
FK506 does not affect cardiac contractility and adrenergic response in vitro.
Milting H, Janssen PM, Wangemann T, Kogler H, Domeier E, Seidler T, Hakim K, Grapow M, Zeitz O, Prestle J, Zerkowski HR., Eur. J. Pharmacol. 430(2-3), 2001
PMID: 11711047
Human embryonic genes re-expressed in cancer cells.
Monk M, Holding C., Oncogene 20(56), 2001
PMID: 11781821
Multipotent embryonic isl1+ progenitor cells lead to cardiac, smooth muscle, and endothelial cell diversification.
Moretti A, Caron L, Nakano A, Lam JT, Bernshausen A, Chen Y, Qyang Y, Bu L, Sasaki M, Martin-Puig S, Sun Y, Evans SM, Laugwitz KL, Chien KR., Cell 127(6), 2006
PMID: 17123592
Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells.
Mummery C, Ward-van Oostwaard D, Doevendans P, Spijker R, van den Brink S, Hassink R, van der Heyden M, Opthof T, Pera M, de la Riviere AB, Passier R, Tertoolen L., Circulation 107(21), 2003
PMID: 12742992
Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.
Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V, Bradford G, Dowell JD, Williams DA, Field LJ., Nature 428(6983), 2004
PMID: 15034593

AUTHOR UNKNOWN, 0
Embryonic stem-cell culture as a tool for developmental cell biology.
Nishikawa S, Jakt LM, Era T., Nat. Rev. Mol. Cell Biol. 8(6), 2007
PMID: 17522593
ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3.
Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M., J. Mol. Cell. Cardiol. 34(10), 2002
PMID: 12392999
Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation.
Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE., Nat. Med. 10(5), 2004
PMID: 15107841
Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.
Okamoto Y, Chaves A, Chen J, Kelley R, Jones K, Weed HG, Gardner KL, Gangi L, Yamaguchi M, Klomkleaw W, Nakayama T, Hamlin RL, Carnes C, Altschuld R, Bauer J, Hai T., Am. J. Pathol. 159(2), 2001
PMID: 11485922
Cellular cardiomyoplasty improves survival after myocardial injury.
Roell W, Lu ZJ, Bloch W, Siedner S, Tiemann K, Xia Y, Stoecker E, Fleischmann M, Bohlen H, Stehle R, Kolossov E, Brem G, Addicks K, Pfitzer G, Welz A, Hescheler J, Fleischmann BK., Circulation 105(20), 2002
PMID: 12021233
Ventricular septal defect and cardiomyopathy in mice lacking the transcription factor CHF1/Hey2.
Sakata Y, Kamei CN, Nakagami H, Bronson R, Liao JK, Chin MT., Proc. Natl. Acad. Sci. U.S.A. 99(25), 2002
PMID: 12454287
Navigating the signalling network in mouse cardiac myocytes.
Sambrano GR, Fraser I, Han H, Ni Y, O'Connell T, Yan Z, Stull JT., Nature 420(6916), 2002
PMID: 12478303

AUTHOR UNKNOWN, 0
Positive inotropic effects of the beta 2-adrenoceptor agonist terbutaline in the human heart: effects of long-term beta 1-adrenoceptor antagonist treatment.
Schafers RF, Adler S, Daul A, Zeitler G, Vogelsang M, Zerkowski HR, Brodde OE., J. Am. Coll. Cardiol. 23(5), 1994
PMID: 8144793
Differentiation and lineage selection of mouse embryonic stem cells in a stirred bench scale bioreactor with automated process control.
Schroeder M, Niebruegge S, Werner A, Willbold E, Burg M, Ruediger M, Field LJ, Lehmann J, Zweigerdt R., Biotechnol. Bioeng. 92(7), 2005
PMID: 16189818
Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides.
Smith AG, Heath JK, Donaldson DD, Wong GG, Moreau J, Stahl M, Rogers D., Nature 336(6200), 1988
PMID: 3143917
A genetic blueprint for cardiac development.
Srivastava D, Olson EN., Nature 407(6801), 2000
PMID: 11001064
Sox2 expression in human stomach adenocarcinomas with gastric and gastric-and-intestinal-mixed phenotypes.
Tsukamoto T, Mizoshita T, Mihara M, Tanaka H, Takenaka Y, Yamamura Y, Nakamura S, Ushijima T, Tatematsu M., Histopathology 46(6), 2005
PMID: 15910596
Foxh1 is essential for development of the anterior heart field.
von Both I, Silvestri C, Erdemir T, Lickert H, Walls JR, Henkelman RM, Rossant J, Harvey RP, Attisano L, Wrana JL., Dev. Cell 7(3), 2004
PMID: 15363409
Oct4 and Sox2 directly regulate expression of another pluripotency transcription factor, Zfp206, in embryonic stem cells.
Wang ZX, Teh CH, Kueh JL, Lufkin T, Robson P, Stanton LW., J. Biol. Chem. 282(17), 2007
PMID: 17344211
Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells.
Williams RL, Hilton DJ, Pease S, Willson TA, Stewart CL, Gearing DP, Wagner EF, Metcalf D, Nicola NA, Gough NM., Nature 336(6200), 1988
PMID: 3143916
Transcription factor CHF1/Hey2 suppresses cardiac hypertrophy through an inhibitory interaction with GATA4.
Xiang F, Sakata Y, Cui L, Youngblood JM, Nakagami H, Liao JK, Liao R, Chin MT., Am. J. Physiol. Heart Circ. Physiol. 290(5), 2006
PMID: 16603706
Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells.
Xu RH, Peck RM, Li DS, Feng X, Ludwig T, Thomson JA., Nat. Methods 2(3), 2005
PMID: 15782187
Scalable production of embryonic stem cell-derived cardiomyocytes.
Zandstra PW, Bauwens C, Yin T, Liu Q, Schiller H, Zweigerdt R, Pasumarthi KB, Field LJ., Tissue Eng. 9(4), 2003
PMID: 13678453
Bone marrow-derived cells do not incorporate into the adult growing vasculature.
Ziegelhoeffer T, Fernandez B, Kostin S, Heil M, Voswinckel R, Helisch A, Schaper W., Circ. Res. 94(2), 2003
PMID: 14656934
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19293330
PubMed | Europe PMC

Suchen in

Google Scholar