Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development

Staiger D, Apel K (1993)
The Plant Journal 4(4): 697-703.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
Abstract / Bemerkung
Flower formation in the long-day plant Sinapis alba is strictly dependent on an inductive light treatment. Differential screening of an apex cDNA library prepared 10 days after flower induction against cDNAs from vegetative apices has identified two cDNA clones, pSFD10.35 and pSFD10.44, which represent transcripts expressed transiently between day 10 and day 20 after induction and which disappear before flowers reach maturity. The corresponding full-length cDNAs which were isolated, Satap35 and Satap44, display 86% overall sequence identity. These cDNAs encode polypeptides with predicted molecular weights of 12.7 and 12.4 kDa, and isoelectric points of 10.4 and 7.5, respectively. The N-terminal portions of the open reading frames have characteristics of signal sequences. In situ hybridization reveals that both transcripts are localized exclusively in the tapetal cell layer of the anthers. Maximal expression is observed in flower buds of approximately 1.5 mm length (tetrad stage). Southern blot analysis demonstrates the presence of additional, closely related genes in the Sinapis genome, as well as the occurrence of homologous genes in Arabidopsis thaliana, Brassica napus and Nicotiana tabacum.
Erscheinungsjahr
Zeitschriftentitel
The Plant Journal
Band
4
Ausgabe
4
Seite(n)
697-703
ISSN
eISSN
PUB-ID

Zitieren

Staiger D, Apel K. Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development. The Plant Journal. 1993;4(4):697-703.
Staiger, D., & Apel, K. (1993). Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development. The Plant Journal, 4(4), 697-703. doi:10.1046/j.1365-313X.1993.04040697.x
Staiger, D., and Apel, K. (1993). Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development. The Plant Journal 4, 697-703.
Staiger, D., & Apel, K., 1993. Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development. The Plant Journal, 4(4), p 697-703.
D. Staiger and K. Apel, “Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development”, The Plant Journal, vol. 4, 1993, pp. 697-703.
Staiger, D., Apel, K.: Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development. The Plant Journal. 4, 697-703 (1993).
Staiger, Dorothee, and Apel, Klaus. “Molecular characterization of two cDNAs from Sinapis alba L. expressed specifically at an early stage of tapetum development”. The Plant Journal 4.4 (1993): 697-703.

92 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Postnatal development of cholinergic input to the thalamic reticular nucleus of the mouse.
Sokhadze G, Campbell PW, Guido W., Eur J Neurosci 49(8), 2019
PMID: 29761601
Corticothalamic network dysfunction and Alzheimer's disease.
Jagirdar R, Chin J., Brain Res (), 2017
PMID: 28919464
Neuropathological changes in the nucleus basalis in schizophrenia.
Williams MR, Marsh R, Macdonald CD, Jain J, Pearce RK, Hirsch SR, Ansorge O, Gentleman SM, Maier M., Eur Arch Psychiatry Clin Neurosci 263(6), 2013
PMID: 23229688
Comparative analysis of the nucleus basalis of Meynert among primates.
Raghanti MA, Simic G, Watson S, Stimpson CD, Hof PR, Sherwood CC., Neuroscience 184(), 2011
PMID: 21504783
c-Fos protein expression is increased in cholinergic neurons of the rodent basal forebrain during spontaneous and induced wakefulness.
McKenna JT, Cordeira JW, Jeffrey BA, Ward CP, Winston S, McCarley RW, Strecker RE., Brain Res Bull 80(6), 2009
PMID: 19716862
Loss of cortical acetylcholine enhances amphetamine-induced locomotor activity.
Mattsson A, Pernold K, Ogren SO, Olson L., Neuroscience 127(3), 2004
PMID: 15283958
Rivastigmine antagonizes deficits in prepulse inhibition induced by selective immunolesioning of cholinergic neurons in nucleus basalis magnocellularis.
Ballmaier M, Casamenti F, Scali C, Mazzoncini R, Zoli M, Pepeu G, Spano PF., Neuroscience 114(1), 2002
PMID: 12207957
Basal forebrain acetylcholine release during REM sleep is significantly greater than during waking.
Vazquez J, Baghdoyan HA., Am J Physiol Regul Integr Comp Physiol 280(2), 2001
PMID: 11208592
The role of basal forebrain neurons in tonic and phasic activation of the cerebral cortex.
Détári L, Rasmusson DD, Semba K., Prog Neurobiol 58(3), 1999
PMID: 10341363
Substantia innominata: a notion which impedes clinical-anatomical correlations in neuropsychiatric disorders.
Heimer L, Harlan RE, Alheid GF, Garcia MM, de Olmos J., Neuroscience 76(4), 1997
PMID: 9027863
Comparison of the regional expression of nicotinic acetylcholine receptor alpha7 mRNA and [125I]-alpha-bungarotoxin binding in human postmortem brain.
Breese CR, Adams C, Logel J, Drebing C, Rollins Y, Barnhart M, Sullivan B, Demasters BK, Freedman R, Leonard S., J Comp Neurol 387(3), 1997
PMID: 9335422
Decreased mesopontine choline acetyltransferase levels in schizophrenia. Correlations with cognitive functions.
Karson CN, Mrak RE, Husain MM, Griffin WS., Mol Chem Neuropathol 29(2-3), 1996
PMID: 8971695
Pharmacology of memory: cholinergic-glutamatergic interactions.
Aigner TG., Curr Opin Neurobiol 5(2), 1995
PMID: 7620302
GABAergic projection from the basal forebrain to the visual sector of the thalamic reticular nucleus in the cat.
Bickford ME, Günlük AE, Van Horn SC, Sherman SM., J Comp Neurol 348(4), 1994
PMID: 7836559
Basal forebrain control of cortical cerebral blood flow is independent of local cortical neurons.
Linville DG, Williams S, Arneric SP., Brain Res 622(1-2), 1993
PMID: 8242364
Glutamic acid decarboxylase gene expression in thalamic reticular neurons transplanted as a cell suspension in the adult thalamus.
Nothias F, Salin P, Peschanski M, Chesselet MF., Brain Res Mol Brain Res 20(3), 1993
PMID: 8302162
Behavioural effects after cholinergic stimulation of the reticular thalamic nucleus in rats.
Kolasiewicz W, Sauss C, Block F, Sontag KH., J Neural Transm Gen Sect 87(3), 1992
PMID: 1581016
Alzheimer's disease affects limbic nuclei of the thalamus.
Braak H, Braak E., Acta Neuropathol 81(3), 1991
PMID: 1711755
The cholinergic system and EEG slow waves.
Riekkinen P, Buzsaki G, Riekkinen P, Soininen H, Partanen J., Electroencephalogr Clin Neurophysiol 78(2), 1991
PMID: 1704840
Compartmental ordering of cholinergic innervation in the mediodorsal nucleus of the thalamus in human brain.
Brandel JP, Hirsch EC, Hersh LB, Javoy-Agid F., Brain Res 515(1-2), 1990
PMID: 2357550
Alz-50 immunoreactivity in the thalamic reticular nucleus in Alzheimer's disease.
Tourtellotte WG, Van Hoesen GW, Hyman BT, Tikoo RK, Damasio AR., Brain Res 515(1-2), 1990
PMID: 2357561
Report of IFCN Committee on Basic Mechanisms. Basic mechanisms of cerebral rhythmic activities.
Steriade M, Gloor P, Llinás RR, Lopes de Silva FH, Mesulam MM., Electroencephalogr Clin Neurophysiol 76(6), 1990
PMID: 1701118
The thalamus participates in the regulation of the sleep-waking cycle. A clinico-pathological study in fatal familial thalamic degeneration.
Tinuper P, Montagna P, Medori R, Cortelli P, Zucconi M, Baruzzi A, Lugaresi E., Electroencephalogr Clin Neurophysiol 73(2), 1989
PMID: 2473878
Ontogeny of cholinergic neurons in the mouse forebrain.
Schambra UB, Sulik KK, Petrusz P, Lauder JM., J Comp Neurol 288(1), 1989
PMID: 2794134
Cholinergic and non-cholinergic projections from the upper brainstem core to the visual thalamus in the cat.
Smith Y, Paré D, Deschênes M, Parent A, Steriade M., Exp Brain Res 70(1), 1988
PMID: 2841149
Time of origin of cholinergic neurons in the rat basal forebrain.
Semba K, Fibiger HC., J Comp Neurol 269(1), 1988
PMID: 3361006
Electric activity in the neocortex of freely moving young and aged rats.
Buzsáki G, Bickford RG, Armstrong DM, Ponomareff G, Chen KS, Ruiz R, Thal LJ, Gage FH., Neuroscience 26(3), 1988
PMID: 3200427

16 References

Daten bereitgestellt von Europe PubMed Central.

Distribution of GABAergic and cholinergic neurons in the rat diagonal band.
Brashear HR, Zaborszky L, Heimer L., Neuroscience 17(2), 1986
PMID: 3517690
The effect of mesencephalic reticular stimulation on thalamic reticularis neurons
Hu, Soc. Neurosci. Abstr. 12(), 1986
Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways — axonal transport enzyme histochemistry and light microscopic analysis
Mesulam, 1982
Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6).
Mesulam MM, Mufson EJ, Wainer BH, Levey AI., Neuroscience 10(4), 1983
PMID: 6320048
Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain.
Nagai T, McGeer PL, McGeer EG., J. Comp. Neurol. 218(2), 1983
PMID: 6886073
Abolition of spindle oscillations in thalamic neurons disconnected from nucleus reticularis thalami.
Steriade M, Deschenes M, Domich L, Mulle C., J. Neurophysiol. 54(6), 1985
PMID: 4087044
The deafferented reticular thalamic nucleus generates spindle rhythmicity.
Steriade M, Domich L, Oakson G, Deschenes M., J. Neurophysiol. 57(1), 1987
PMID: 3559675

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 2439172
PubMed | Europe PMC

Suchen in

Google Scholar