A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue

Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D (1994)
The Plant Journal 5(6): 799-813.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ;
Abstract / Bemerkung
To investigate physiological processes generated by endogenous circadian rhythms on the molecular level, we have identified clock-controlled genes In the long-day plant Sinapis aiba L. A cDNA library was differentially screened using cDNA probes representing transcripts expressed at either the middle of the light period or the middle of the dark period. Two closely related groups of transcripts, Sagrp1 and Sagrp2, controlled by a circadian rhythm have been isolated. RNA blot analysis verified that transcript levels oscillate in plants grown in light/dark cycles with maxima between ‘Zeitgober’ time (zt)8 and zt12 (8–12 h after onset of illumination) and minima around zt20. Steady-state mRNA levels continue to oscillate in plants shifted from light/dark cycles to constant light. No synchronous mRNA oscillations are found in plants grown from seed in constant light at constant temperature, suggesting that the clock has to be entrained initially. In contrast, when plants grown in constant light are exposed to rhythmic temperature shifts oscillations of steady-state Sagrp mRNA levels are induced, indicating that temperature acts as an alternative external stimulus (zeitgeber) other than light to entrain the oscillator. In situ hybridization reveals that both transcript groups are expressed predominantly in meristematic and growing tissue. Strong expression is observed in the leaf primordia of the shoot apex, the procambial strands, cambium and in all cell layers of young leaves around zt12. In contrast, little or no signal is found on tissue sections isolated at zt20. This indicates that the oscillator(s) regulating Sagrp transcript fluctuations operate(s) synchronously in different organs. For both transcript groups cDNAs were isolated corresponding to unspliced pre-mRNAs or to transcripts generated by the use of a second 5′ splice site. The cDNAs corresponding to the fully spliced transcripts contain open reading frames for polypeptides of 16 kDa, each containing a putative N-terminal RNA recognition motif and a C-terminal region rich in glycine. The predicted proteins show strong homology to an ABA-inducible glycine-rich protein from maize embryos and to the mammalian RNA-binding protein A1 of the heterogeneous nuclear ribonucleoprotein complex involved in pre-mRNA splicing. The SaGRP protein fluctuates with a very low amplitude over light/dark cycles. Immunogold labeling demonstrates the presence of the SaGRP protein within the nucleus of the investigated meristematic cells of young leaves.
Erscheinungsjahr
Zeitschriftentitel
The Plant Journal
Band
5
Ausgabe
6
Seite(n)
799-813
ISSN
eISSN
PUB-ID

Zitieren

Heintzen C, Melzer S, Fischer R, Kappeler S, Apel K, Staiger D. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal. 1994;5(6):799-813.
Heintzen, C., Melzer, S., Fischer, R., Kappeler, S., Apel, K., & Staiger, D. (1994). A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal, 5(6), 799-813. doi:10.1046/j.1365-313X.1994.5060799.x
Heintzen, C., Melzer, S., Fischer, R., Kappeler, S., Apel, K., and Staiger, D. (1994). A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal 5, 799-813.
Heintzen, C., et al., 1994. A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal, 5(6), p 799-813.
C. Heintzen, et al., “A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue”, The Plant Journal, vol. 5, 1994, pp. 799-813.
Heintzen, C., Melzer, S., Fischer, R., Kappeler, S., Apel, K., Staiger, D.: A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. The Plant Journal. 5, 799-813 (1994).
Heintzen, Christian, Melzer, Slegbert, Fischer, Ruth, Kappeler, Stefan, Apel, Klaus, and Staiger, Dorothee. “A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue”. The Plant Journal 5.6 (1994): 799-813.

76 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Löhr B, Streitner C, Steffen A, Lange T, Staiger D., Mol Biol Rep 41(1), 2014
PMID: 24281950
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res 42(15), 2014
PMID: 25104024
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
Perez-Santángelo S, Schlaen RG, Yanovsky MJ., Brief Funct Genomics 12(1), 2013
PMID: 23165351
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
An antifungal peptide from Coffea canephora seeds with sequence homology to glycine-rich proteins exerts membrane permeabilization and nuclear localization in fungi.
Zottich U, Da Cunha M, Carvalho AO, Dias GB, Casarin N, Vasconcelos IM, Gomes VM., Biochim Biophys Acta 1830(6), 2013
PMID: 23500079
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana.
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Plant Signal Behav 8(7), 2013
PMID: 23656882
Complexity of the alternative splicing landscape in plants.
Reddy AS, Marquez Y, Kalyna M, Barta A., Plant Cell 25(10), 2013
PMID: 24179125
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Spotlight on post-transcriptional control in the circadian system.
Staiger D, Köster T., Cell Mol Life Sci 68(1), 2011
PMID: 20803230
Conservation and divergence of autonomous pathway genes in the flowering regulatory network of Beta vulgaris.
Abou-Elwafa SF, Büttner B, Chia T, Schulze-Buxloh G, Hohmann U, Mutasa-Göttgens E, Jung C, Müller AE., J Exp Bot 62(10), 2011
PMID: 20974738
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
An expanding universe of circadian networks in higher plants.
Pruneda-Paz JL, Kay SA., Trends Plant Sci 15(5), 2010
PMID: 20382065
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
Identification and analysis of the germin-like gene family in soybean.
Lu M, Han YP, Gao JG, Wang XJ, Li WB., BMC Genomics 11(), 2010
PMID: 21059215
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D., Plant J 56(2), 2008
PMID: 18573194
AtGRP2, a cold-induced nucleo-cytoplasmic RNA-binding protein, has a role in flower and seed development.
Fusaro AF, Bocca SN, Ramos RL, Barrôco RM, Magioli C, Jorge VC, Coutinho TC, Rangel-Lima CM, De Rycke R, Inzé D, Engler G, Sachetto-Martins G., Planta 225(6), 2007
PMID: 17123099
Proteomic characterization of copper stress response in Cannabis sativa roots.
Bona E, Marsano F, Cavaletto M, Berta G., Proteomics 7(7), 2007
PMID: 17352425
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J 52(6), 2007
PMID: 17924945
Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation.
Shinozuka H, Hisano H, Yoneyama S, Shimamoto Y, Jones ES, Forster JW, Yamada T, Kanazawa A., Mol Genet Genomics 275(4), 2006
PMID: 16614778
Molecular characterization of two anther-specific genes encoding putative RNA-binding proteins, AtRBP45s, in Arabidopsis thaliana.
Park JI, Endo M, Kazama T, Saito H, Hakozaki H, Takada Y, Kawagishi-Kobayashi M, Watanabe M., Genes Genet Syst 81(5), 2006
PMID: 17159297
Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock.
Fowler SG, Cook D, Thomashow MF., Plant Physiol 137(3), 2005
PMID: 15728337
Expression of cold-inducible RNA-binding protein in the normal endometrium, endometrial hyperplasia, and endometrial carcinoma.
Hamid AA, Mandai M, Fujita J, Nanbu K, Kariya M, Kusakari T, Fukuhara K, Fujii S., Int J Gynecol Pathol 22(3), 2003
PMID: 12819390
Glycine-rich proteins encoded by a nodule-specific gene family are implicated in different stages of symbiotic nodule development in Medicago spp.
Kevei Z, Vinardell JM, Kiss GB, Kondorosi A, Kondorosi E., Mol Plant Microbe Interact 15(9), 2002
PMID: 12236598
Phase-specific circadian clock regulatory elements in Arabidopsis.
Michael TP, McClung CR., Plant Physiol 130(2), 2002
PMID: 12376630
Endogenous timekeepers in photosynthetic organisms.
Johnson CH., Annu Rev Physiol 63(), 2001
PMID: 11181973
Picking out parallels: plant circadian clocks in context.
McWatters HG, Roden LC, Staiger D., Philos Trans R Soc Lond B Biol Sci 356(1415), 2001
PMID: 11710980
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos Trans R Soc Lond B Biol Sci 356(1415), 2001
PMID: 11710982
Cloning and characterization of amphibian cold inducible RNA-binding protein.
Saito T, Sugimoto K, Adachi Y, Wu Q, Mori KJ., Comp Biochem Physiol B Biochem Mol Biol 125(2), 2000
PMID: 10817911
Fluorescent differential display identifies circadian clock-regulated genes in Arabidopsis thaliana.
Kreps JA, Muramatsu T, Furuya M, Kay SA., J Biol Rhythms 15(3), 2000
PMID: 10885875
From biological clock to biological rhythms.
Hardin PE., Genome Biol 1(4), 2000
PMID: 11178250
NADH-glutamate synthase in alfalfa root nodules. Genetic regulation and cellular expression.
Trepp GB, van de Mortel M, Yoshioka H, Miller SS, Samac DA, Gantt JS, Vance CP., Plant Physiol 119(3), 1999
PMID: 10069821
The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading.
Finlayson SA, Lee IJ, Mullet JE, Morgan PW., Plant Physiol 119(3), 1999
PMID: 10069847
Effects of ischemia and H2O2 on the cold stress protein CIRP expression in rat neuronal cells.
Xue JH, Nonoguchi K, Fukumoto M, Sato T, Nishiyama H, Higashitsuji H, Itoh K, Fujita J., Free Radic Biol Med 27(11-12), 1999
PMID: 10641716
Diurnal change of the cold-inducible RNA-binding protein (Cirp) expression in mouse brain.
Nishiyama H, Xue JH, Sato T, Fukuyama H, Mizuno N, Houtani T, Sugimoto T, Fujita J., Biochem Biophys Res Commun 245(2), 1998
PMID: 9571190
Accumulation of a clock-regulated transcript during flower-inductive darkness in pharbitis nil
Sage-Ono K, Ono M, Harada H, Kamada H., Plant Physiol 116(4), 1998
PMID: 9536066
Imbibition, but not release from stratification, sets the circadian clock in Arabidopsis seedlings.
Zhong HH, Painter JE, Salomé PA, Straume M, McClung CR., Plant Cell 10(12), 1998
PMID: 9836741
Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley.
Molina A, Mena M, Carbonero P, García-Olmedo F., Plant Mol Biol 33(5), 1997
PMID: 9106504
A glycine-rich RNA-binding protein mediating cold-inducible suppression of mammalian cell growth.
Nishiyama H, Itoh K, Kaneko Y, Kishishita M, Yoshida O, Fujita J., J Cell Biol 137(4), 1997
PMID: 9151692
Increased transcript level of RBM3, a member of the glycine-rich RNA-binding protein family, in human cells in response to cold stress.
Danno S, Nishiyama H, Higashitsuji H, Yokoi H, Xue JH, Itoh K, Matsuda T, Fujita J., Biochem Biophys Res Commun 236(3), 1997
PMID: 9245737
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc Natl Acad Sci U S A 94(16), 1997
PMID: 9238008
Genetics and molecular analysis of circadian rhythms.
Dunlap JC., Annu Rev Genet 30(), 1996
PMID: 8982466
A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria.
Tsinoremas NF, Ishiura M, Kondo T, Andersson CR, Tanaka K, Takahashi H, Johnson CH, Golden SS., EMBO J 15(10), 1996
PMID: 8665856

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 8054987
PubMed | Europe PMC

Suchen in

Google Scholar