AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana

Heintzen C, Nater M, Apel K, Staiger D (1997)
Proceedings of the National Academy of Sciences 94(16): 8515-8520.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Heintzen, Christian; Nater, Mena; Apel, Klaus; Staiger, DorotheeUniBi
Abstract / Bemerkung
The endogenous clock that drives circadian rhythms is thought to communicate temporal information within the cell via cycling downstream transcripts. A transcript encoding a glycine-rich RNA-binding protein, Atgrp7, in Arabidopsis thaliana undergoes circadian oscillations with peak levels in the evening. The AtGRP7 protein also cycles with a time delay so that Atgrp7 transcript levels decline when the AtGRP7 protein accumulates to high levels. After AtGRP7 protein concentration has fallen to trough levels, Atgrp7 transcript starts to reaccumulate. Overexpression of AtGRP7 in transgenic Arabidopsis plants severely depresses cycling of the endogenous Atgrp7 transcript. These data establish both transcript and protein as components of a negative feedback circuit capable of generating a stable oscillation. AtGRP7 overexpression also depresses the oscillation of the circadian-regulated transcript encoding the related RNA-binding protein AtGRP8 but does not affect the oscillation of transcripts such as cab or catalase mRNAs. We propose that the AtGRP7 autoregulatory loop represents a “slave” oscillator in Arabidopsis that receives temporal information from a central “master” oscillator, conserves the rhythmicity by negative feedback, and transduces it to the output pathway by regulating a subset of clock-controlled transcripts.
Erscheinungsjahr
1997
Zeitschriftentitel
Proceedings of the National Academy of Sciences
Band
94
Ausgabe
16
Seite(n)
8515-8520
ISSN
0027-8424
eISSN
1091-6490
Page URI
https://pub.uni-bielefeld.de/record/2439134

Zitieren

Heintzen C, Nater M, Apel K, Staiger D. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences. 1997;94(16):8515-8520.
Heintzen, C., Nater, M., Apel, K., & Staiger, D. (1997). AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 94(16), 8515-8520. https://doi.org/10.1073/pnas.94.16.8515
Heintzen, Christian, Nater, Mena, Apel, Klaus, and Staiger, Dorothee. 1997. “AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana”. Proceedings of the National Academy of Sciences 94 (16): 8515-8520.
Heintzen, C., Nater, M., Apel, K., and Staiger, D. (1997). AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences 94, 8515-8520.
Heintzen, C., et al., 1997. AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 94(16), p 8515-8520.
C. Heintzen, et al., “AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana”, Proceedings of the National Academy of Sciences, vol. 94, 1997, pp. 8515-8520.
Heintzen, C., Nater, M., Apel, K., Staiger, D.: AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana. Proceedings of the National Academy of Sciences. 94, 8515-8520 (1997).
Heintzen, Christian, Nater, Mena, Apel, Klaus, and Staiger, Dorothee. “AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana”. Proceedings of the National Academy of Sciences 94.16 (1997): 8515-8520.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

124 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity.
Zhang J, Ren Z, Zhou Y, Ma Z, Ma Y, Hou D, Xu Z, Huang X., Int J Mol Sci 20(5), 2019
PMID: 30857376
Characterization of genes and alleles involved in the control of flowering time in grapevine.
Kamal N, Ochßner I, Schwandner A, Viehöver P, Hausmann L, Töpfer R, Weisshaar B, Holtgräwe D., PLoS One 14(7), 2019
PMID: 31269026
Redox and the circadian clock in plant immunity: A balancing act.
Karapetyan S, Dong X., Free Radic Biol Med 119(), 2018
PMID: 29274381
Circadian clock components control daily growth activities by modulating cytokinin levels and cell division-associated gene expression in Populus trees.
Edwards KD, Takata N, Johansson M, Jurca M, Novák O, Hényková E, Liverani S, Kozarewa I, Strnad M, Millar AJ, Ljung K, Eriksson ME., Plant Cell Environ 41(6), 2018
PMID: 29520862
RING-H2-type E3 gene VpRH2 from Vitis pseudoreticulata improves resistance to powdery mildew by interacting with VpGRP2A.
Wang L, Xie X, Yao W, Wang J, Ma F, Wang C, Yang Y, Tong W, Zhang J, Xu Y, Wang X, Zhang C, Wang Y., J Exp Bot 68(7), 2017
PMID: 28369599
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms.
Wu Y, Zhang Y, Sun Y, Yu J, Wang P, Ma H, Chen S, Ma L, Zhang D, He Q, Guo J., Genetics 206(4), 2017
PMID: 28600326
Structural disorder in plant proteins: where plasticity meets sessility.
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC., Cell Mol Life Sci 74(17), 2017
PMID: 28643166
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Cold-inducible proteins CIRP and RBM3, a unique couple with activities far beyond the cold.
Zhu X, Bührer C, Wellmann S., Cell Mol Life Sci 73(20), 2016
PMID: 27147467
Circadian Profiling of the Arabidopsis Proteome Using 2D-DIGE.
Choudhary MK, Nomura Y, Shi H, Nakagami H, Somers DE., Front Plant Sci 7(), 2016
PMID: 27462335
The circadian clock and defence signalling in plants.
Sharma M, Bhatt D., Mol Plant Pathol 16(2), 2015
PMID: 25081907
STRESSing the role of the plant circadian clock.
Seo PJ, Mas P., Trends Plant Sci 20(4), 2015
PMID: 25631123
Age-related expression analysis of mouse liver nuclear protein binding to 3'-untranslated region of Period2 gene.
Hamada T, Miyakawa K, Kushige H, Shibata S, Kurachi S., J Physiol Sci 65(4), 2015
PMID: 25846207
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D., Plant Cell Environ 37(3), 2014
PMID: 23961939
A glycine-rich RNA-binding protein affects gibberellin biosynthesis in Arabidopsis.
Löhr B, Streitner C, Steffen A, Lange T, Staiger D., Mol Biol Rep 41(1), 2014
PMID: 24281950
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res 42(13), 2014
PMID: 24957607
Regulation of pri-miRNA processing by the hnRNP-like protein AtGRP7 in Arabidopsis.
Köster T, Meyer K, Weinholdt C, Smith LM, Lummer M, Speth C, Grosse I, Weigel D, Staiger D., Nucleic Acids Res 42(15), 2014
PMID: 25104024
Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis.
Bocobza SE, Malitsky S, Araújo WL, Nunes-Nesi A, Meir S, Shapira M, Fernie AR, Aharoni A., Plant Cell 25(1), 2013
PMID: 23341335
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
Phytopathogen type III effectors as probes of biological systems.
Lee AH, Middleton MA, Guttman DS, Desveaux D., Microb Biotechnol 6(3), 2013
PMID: 23433088
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana.
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Plant Signal Behav 8(7), 2013
PMID: 23656882
Crosstalk between the circadian clock and innate immunity in Arabidopsis.
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H., PLoS Pathog 9(6), 2013
PMID: 23754942
Early evolutionary acquisition of stomatal control and development gene signalling networks.
Chater C, Gray JE, Beerling DJ., Curr Opin Plant Biol 16(5), 2013
PMID: 23871687
Identification of cis-regulatory elements specific for different types of reactive oxygen species in Arabidopsis thaliana.
Petrov V, Vermeirssen V, De Clercq I, Van Breusegem F, Minkov I, Vandepoele K, Gechev TS., Gene 499(1), 2012
PMID: 22402413
mRNA 3' tagging is induced by nonsense-mediated decay and promotes ribosome dissociation.
Morozov IY, Jones MG, Gould PD, Crome V, Wilson JB, Hall AJ, Rigden DJ, Caddick MX., Mol Cell Biol 32(13), 2012
PMID: 22547684
Cellular requirements for LARK in the Drosophila circadian system.
Sundram V, Ng FS, Roberts MA, Millán C, Ewer J, Jackson FR., J Biol Rhythms 27(3), 2012
PMID: 22653887
mADP-RTs: versatile virulence factors from bacterial pathogens of plants and mammals.
Wirthmueller L, Banfield MJ., Front Plant Sci 3(), 2012
PMID: 22754560
Quantitative levels of Deficiens and Globosa during late petal development show a complex transcriptional network topology of B function.
Manchado-Rojo M, Delgado-Benarroch L, Roca MJ, Weiss J, Egea-Cortines M., Plant J 72(2), 2012
PMID: 22708513
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Posttranscriptional mechanisms in controlling eukaryotic circadian rhythms.
Zhang L, Weng W, Guo J., FEBS Lett 585(10), 2011
PMID: 21414314
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
Structure function analysis of an ADP-ribosyltransferase type III effector and its RNA-binding target in plant immunity.
Jeong BR, Lin Y, Joe A, Guo M, Korneli C, Yang H, Wang P, Yu M, Cerny RL, Staiger D, Alfano JR, Xu Y., J Biol Chem 286(50), 2011
PMID: 22013065
Changes in diurnal patterns within the Populus transcriptome and metabolome in response to photoperiod variation.
Hoffman DE, Jonsson P, Bylesjö M, Trygg J, Antti H, Eriksson ME, Moritz T., Plant Cell Environ 33(8), 2010
PMID: 20302601
Circadian clock components regulate entry and affect exit of seasonal dormancy as well as winter hardiness in Populus trees.
Ibáñez C, Kozarewa I, Johansson M, Ogren E, Rohde A, Eriksson ME., Plant Physiol 153(4), 2010
PMID: 20530613
Post-transcriptional controls - adding a new layer of regulation to clock gene expression.
Cibois M, Gautier-Courteille C, Legagneux V, Paillard L., Trends Cell Biol 20(9), 2010
PMID: 20630760
Proteomic study identifies proteins involved in brassinosteroid regulation of rice growth.
Wang F, Bai MY, Deng Z, Oses-Prieto JA, Burlingame AL, Lu T, Chong K, Wang ZY., J Integr Plant Biol 52(12), 2010
PMID: 21106006
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
Altered LARK expression perturbs development and physiology of the Drosophila PDF clock neurons.
Huang Y, Howlett E, Stern M, Jackson FR., Mol Cell Neurosci 41(2), 2009
PMID: 19303442
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys J 96(12), 2009
PMID: 19527663
Breaking the barriers: microbial effector molecules subvert plant immunity.
Göhre V, Robatzek S., Annu Rev Phytopathol 46(), 2008
PMID: 18422429
Functional-genomics-based identification of genes that regulate Arabidopsis responses to multiple abiotic stresses.
Kant P, Gordon M, Kant S, Zolla G, Davydov O, Heimer YM, Chalifa-Caspi V, Shaked R, Barak S., Plant Cell Environ 31(6), 2008
PMID: 18182014
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J 55(3), 2008
PMID: 18410480
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D., Plant J 56(2), 2008
PMID: 18573194
Regulation of output from the plant circadian clock.
Yakir E, Hilman D, Harir Y, Green RM., FEBS J 274(2), 2007
PMID: 17229141
Posttranscriptional regulation of mammalian circadian clock output.
Garbarino-Pico E, Green CB., Cold Spring Harb Symp Quant Biol 72(), 2007
PMID: 18419272
LARK activates posttranscriptional expression of an essential mammalian clock protein, PERIOD1.
Kojima S, Matsumoto K, Hirose M, Shimada M, Nagano M, Shigeyoshi Y, Hoshino S, Ui-Tei K, Saigo K, Green CB, Sakaki Y, Tei H., Proc Natl Acad Sci U S A 104(6), 2007
PMID: 17264215
ELF4 is required for oscillatory properties of the circadian clock.
McWatters HG, Kolmos E, Hall A, Doyle MR, Amasino RM, Gyula P, Nagy F, Millar AJ, Davis SJ., Plant Physiol 144(1), 2007
PMID: 17384164
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Mutations in CHLOROPLAST RNA BINDING provide evidence for the involvement of the chloroplast in the regulation of the circadian clock in Arabidopsis.
Hassidim M, Yakir E, Fradkin D, Hilman D, Kron I, Keren N, Harir Y, Yerushalmi S, Green RM., Plant J 51(4), 2007
PMID: 17617174
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J 52(6), 2007
PMID: 17924945
AtGRP7 is involved in the regulation of abscisic acid and stress responses in Arabidopsis.
Cao S, Jiang L, Song S, Jing R, Xu G., Cell Mol Biol Lett 11(4), 2006
PMID: 17001447
The rhythms of life: circadian output pathways in Neurospora.
Vitalini MW, de Paula RM, Park WD, Bell-Pedersen D., J Biol Rhythms 21(6), 2006
PMID: 17107934
Assignment of an essential role for the Neurospora frequency gene in circadian entrainment to temperature cycles.
Pregueiro AM, Price-Lloyd N, Bell-Pedersen D, Heintzen C, Loros JJ, Dunlap JC., Proc Natl Acad Sci U S A 102(6), 2005
PMID: 15677317
The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to?
Mittag M, Kiaulehn S, Johnson CH., Plant Physiol 137(2), 2005
PMID: 15710681
Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway.
Lidder P, Gutiérrez RA, Salomé PA, McClung CR, Green PJ., Plant Physiol 138(4), 2005
PMID: 16055688
Sugars and circadian regulation make major contributions to the global regulation of diurnal gene expression in Arabidopsis.
Bläsing OE, Gibon Y, Günther M, Höhne M, Morcuende R, Osuna D, Thimm O, Usadel B, Scheible WR, Stitt M., Plant Cell 17(12), 2005
PMID: 16299223
Posttranscriptional control of plant development.
Cheng Y, Chen X., Curr Opin Plant Biol 7(1), 2004
PMID: 14732437
A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.
Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM., Plant Cell 16(3), 2004
PMID: 14973162
Circadian clocks and natural antisense RNA.
Crosthwaite SK., FEBS Lett 567(1), 2004
PMID: 15165892
The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M., Eukaryot Cell 3(3), 2004
PMID: 15190002
The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function.
Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C., Genes Dev 17(2), 2003
PMID: 12533513
Cell autonomous circadian waves of the APRR1/TOC1 quintet in an established cell line of Arabidopsis thaliana.
Nakamichi N, Matsushika A, Yamashino T, Mizuno T., Plant Cell Physiol 44(3), 2003
PMID: 12668783
A suite of photoreceptors entrains the plant circadian clock.
Millar AJ., J Biol Rhythms 18(3), 2003
PMID: 12828279
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol Biol 53(1-2), 2003
PMID: 14756317
The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis.
Kuno N, Møller SG, Shinomura T, Xu X, Chua NH, Furuya M., Plant Cell 15(10), 2003
PMID: 14523250
The APRR1/TOC1 quintet implicated in circadian rhythms of Arabidopsis thaliana: I. Characterization with APRR1-overexpressing plants.
Makino S, Matsushika A, Kojima M, Yamashino T, Mizuno T., Plant Cell Physiol 43(1), 2002
PMID: 11828023
The Arabidopsis circadian system.
McClung CR, Salomé PA, Michael TP., Arabidopsis Book 1(), 2002
PMID: 22303209
LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carré IA, Coupland G., Dev Cell 2(5), 2002
PMID: 12015970
Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
Green RM, Tingay S, Wang ZY, Tobin EM., Plant Physiol 129(2), 2002
PMID: 12068102
Molecular bases of circadian rhythms.
Harmer SL, Panda S, Kay SA., Annu Rev Cell Dev Biol 17(), 2001
PMID: 11687489
A molecular explanation for the long-term suppression of circadian rhythms by a single light pulse.
Leloup JC, Goldbeter A., Am J Physiol Regul Integr Comp Physiol 280(4), 2001
PMID: 11247846
Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants.
Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM., Plant Physiol 126(1), 2001
PMID: 11351099
CIRCADIAN RHYTHMS IN PLANTS.
McClung CR., Annu Rev Plant Physiol Plant Mol Biol 52(), 2001
PMID: 11337395
Circadian systems: different levels of complexity.
Roenneberg T, Merrow M., Philos Trans R Soc Lond B Biol Sci 356(1415), 2001
PMID: 11710975
Picking out parallels: plant circadian clocks in context.
McWatters HG, Roden LC, Staiger D., Philos Trans R Soc Lond B Biol Sci 356(1415), 2001
PMID: 11710980
RNA-binding proteins and circadian rhythms in Arabidopsis thaliana.
Staiger D., Philos Trans R Soc Lond B Biol Sci 356(1415), 2001
PMID: 11710982
Circadian regulation of the lark RNA-binding protein within identifiable neurosecretory cells.
Zhang X, McNeil GP, Hilderbrand-Chae MJ, Franklin TM, Schroeder AJ, Jackson FR., J Neurobiol 45(1), 2000
PMID: 10992253
A brief history of circadian time.
Loudon AS, Semikhodskii AG, Crosthwaite SK., Trends Genet 16(11), 2000
PMID: 11074285
All in good time: the Arabidopsis circadian clock.
Barak S, Tobin EM, Andronis C, Sugano S, Green RM., Trends Plant Sci 5(12), 2000
PMID: 11120473
Molecular bases for circadian clocks.
Dunlap JC., Cell 96(2), 1999
PMID: 9988221
Diurnal regulation of a DNA binding protein to the period repeat sequence in the SCN nuclear extract of rat brain.
Hamada T, Kako K, Wakamatsu H, Shibata S, Watanabe S, Ishida N., Brain Res Mol Brain Res 65(2), 1999
PMID: 10064892
cpmA, a gene involved in an output pathway of the cyanobacterial circadian system.
Katayama M, Tsinoremas NF, Kondo T, Golden SS., J Bacteriol 181(11), 1999
PMID: 10348865
A molecular rhythm mediating circadian clock output in Drosophila.
McNeil GP, Zhang X, Genova G, Jackson FR., Neuron 20(2), 1998
PMID: 9491990
Molecular circadian oscillators: an alternative hypothesis.
Roenneberg T, Merrow M., J Biol Rhythms 13(2), 1998
PMID: 9554578
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carré IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
The role of transcription factors in circadian gene expression.
Kako K, Ishida N., Neurosci Res 31(4), 1998
PMID: 9809584

49 References

Daten bereitgestellt von Europe PubMed Central.


Sweeney B., 1987
Genetics and molecular analysis of circadian rhythms.
Dunlap JC., Annu. Rev. Genet. 30(), 1996
PMID: 8982466
New models in vogue for circadian clocks.
Kay SA, Millar AJ., Cell 83(3), 1995
PMID: 8521465

Pittendrigh C., 1981
Restoration of circadian behavioural rhythms by gene transfer in Drosophila.
Bargiello TA, Jackson FR, Young MW., Nature 312(5996), 1984
PMID: 6440029
Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms.
Reddy P, Zehring WA, Wheeler DA, Pirrotta V, Hadfield C, Hall JC, Rosbash M., Cell 38(3), 1984
PMID: 6435882
Positional cloning and sequence analysis of the Drosophila clock gene, timeless.
Myers MP, Wager-Smith K, Wesley CS, Young MW, Sehgal A., Science 270(5237), 1995
PMID: 7481771
Negative feedback defining a circadian clock: autoregulation of the clock gene frequency.
Aronson BD, Johnson KA, Loros JJ, Dunlap JC., Science 263(5153), 1994
PMID: 8128244
Block in nuclear localization of period protein by a second clock mutation, timeless.
Vosshall LB, Price JL, Sehgal A, Saez L, Young MW., Science 263(5153), 1994
PMID: 8128247

Beator J, Kloppstech K., 1994
Illuminating the clock: circadian photobiology.
Johnson CH., Semin. Cell Biol. 5(5), 1994
PMID: 7881075

Staiger D., 1996
Circadian clock mutants in Arabidopsis identified by luciferase imaging.
Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA., Science 267(5201), 1995
PMID: 7855595
Simplified high throughput protocol for northern hybridization.
Yang H, McLeese J, Weisbart M, Dionne JL, Lemaire I, Aubin RA., Nucleic Acids Res. 21(14), 1993
PMID: 8341618
Molecular cloning and analysis of cDNA sequences derived from poly A+ RNA from barley endosperm: identification of B hordein related clones.
Forde BG, Kreis M, Bahramian MB, Matthews JA, Miflin BJ, Thompson RD, Bartels D, Flavell RB., Nucleic Acids Res. 9(24), 1981
PMID: 6174944
A set of plant expression vectors for transcriptional and translational fusions.
Topfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH., Nucleic Acids Res. 15(14), 1987
PMID: 3615207
The 5'-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo.
Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM., Nucleic Acids Res. 15(8), 1987
PMID: 3575095
Binary Agrobacterium vectors for plant transformation.
Bevan M., Nucleic Acids Res. 12(22), 1984
PMID: 6095209
Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection.
Valvekens D, Van Montagu M, Van Lijsebettens M., Proc. Natl. Acad. Sci. U.S.A. 85(15), 1988
PMID: 16593964

Murashige T, Skoog F., 1962
Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana.
Leutwiler LS, Meyerowitz EM, Tobin EM., Nucleic Acids Res. 14(10), 1986
PMID: 3012462

AUTHOR UNKNOWN, 0
Formal approaches to understanding biological oscillators.
Friesen WO, Block GD, Hocker CG., Annu. Rev. Physiol. 55(), 1993
PMID: 8466188
Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation.
Sehgal A, Rothenfluh-Hilfiker A, Hunter-Ensor M, Chen Y, Myers MP, Young MW., Science 270(5237), 1995
PMID: 7481772
Heterogeneous nuclear ribonucleoprotein K is a transcription factor.
Michelotti EF, Michelotti GA, Aronsohn AI, Levens D., Mol. Cell. Biol. 16(5), 1996
PMID: 8628302
mRNP4, a major mRNA-binding protein from Xenopus oocytes is identical to transcription factor FRG Y2.
Deschamps S, Viel A, Garrigos M, Denis H, le Maire M., J. Biol. Chem. 267(20), 1992
PMID: 1629179
Evidence of multiple circadian oscillators in bean plants.
Hennessey TL, Field CB., J. Biol. Rhythms 7(2), 1992
PMID: 1611126
Circadian rhythms and the circadian organization of living systems.
PITTENDRIGH CS., Cold Spring Harb. Symp. Quant. Biol. 25(), 1960
PMID: 13736116
A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria.
Tsinoremas NF, Ishiura M, Kondo T, Andersson CR, Tanaka K, Takahashi H, Johnson CH, Golden SS., EMBO J. 15(10), 1996
PMID: 8665856
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 9238008
PubMed | Europe PMC

Suchen in

Google Scholar