Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock

Fankhauser C, Staiger D (2002)
Planta 216(1): 1-16.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Fankhauser, Christian; Staiger, DorotheeUniBi
Abstract / Bemerkung
To keep track of fluctuations in spectral composition and intensity of incoming sunlight, plants engage a plethora of photosensory pigments. Absorption of light by these photoreceptors sets in motion signaling cascades that ultimately influence the plant's physiology. Many light-controlled processes are based on modulation of gene activity in response to changes in irradiation. The molecular basis of this regulation and the downstream components transducing signals from the photoreceptors are not fully understood yet, but recent evidence suggests that some of those routes are rather short. The phytochrome photoreceptors have been found to influence light-responsive promoters by direct contact with transcription factors. Additionally, the cryptochrome blue-light receptors directly interact with a key repressor of photomorphogenesis, suggesting that light activation of photoreceptors could initiate photomorphogenesis through posttranslational regulation. This review focuses on recent insights into photosensory transduction mechanisms as well as on our current understanding of light entrainment of the endogenous clock.
Page URI


Fankhauser C, Staiger D. Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta. 2002;216(1):1-16.
Fankhauser, C., & Staiger, D. (2002). Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta, 216(1), 1-16.
Fankhauser, Christian, and Staiger, Dorothee. 2002. “Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock”. Planta 216 (1): 1-16.
Fankhauser, C., and Staiger, D. (2002). Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta 216, 1-16.
Fankhauser, C., & Staiger, D., 2002. Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta, 216(1), p 1-16.
C. Fankhauser and D. Staiger, “Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock”, Planta, vol. 216, 2002, pp. 1-16.
Fankhauser, C., Staiger, D.: Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock. Planta. 216, 1-16 (2002).
Fankhauser, Christian, and Staiger, Dorothee. “Photoreceptors in Arabidopsis thaliana: light perception, signal transduction and entrainment of the endogenous clock”. Planta 216.1 (2002): 1-16.

70 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Uncovering the molecular signature underlying the light intensity-dependent root development in Arabidopsis thaliana.
Kumari S, Yadav S, Patra D, Singh S, Sarkar AK, Panigrahi KCS., BMC Genomics 20(1), 2019
PMID: 31325959
3'-Phosphoadenosine 5'-Phosphate Accumulation Delays the Circadian System.
Litthauer S, Chan KX, Jones MA., Plant Physiol 176(4), 2018
PMID: 29487119
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Light Regulation of Alternative Pre-mRNA Splicing in Plants.
Zhang H, Lin C, Gu L., Photochem Photobiol 93(1), 2017
PMID: 27925216
Polyphenolic extract of InsP 5-ptase expressing tomato plants reduce the proliferation of MCF-7 breast cancer cells.
Alimohammadi M, Lahiani MH, McGehee D, Khodakovskaya M., PLoS One 12(4), 2017
PMID: 28448505
Phytochrome A and B Regulate Primary Metabolism in Arabidopsis Leaves in Response to Light.
Han X, Tohge T, Lalor P, Dockery P, Devaney N, Esteves-Ferreira AA, Fernie AR, Sulpice R., Front Plant Sci 8(), 2017
PMID: 28848593
De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering.
Nie S, Li C, Xu L, Wang Y, Huang D, Muleke EM, Sun X, Xie Y, Liu L., BMC Genomics 17(), 2016
PMID: 27216755
Comparative Proteomic Analysis of the Response of Maize (Zea mays L.) Leaves to Long Photoperiod Condition.
Wu L, Tian L, Wang S, Zhang J, Liu P, Tian Z, Zhang H, Liu H, Chen Y., Front Plant Sci 7(), 2016
PMID: 27313588
Molecular mechanisms at the core of the plant circadian oscillator.
Nohales MA, Kay SA., Nat Struct Mol Biol 23(12), 2016
PMID: 27922614
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
A theoretical study on seasonality.
Schmal C, Myung J, Herzel H, Bordyugov G., Front Neurol 6(), 2015
PMID: 25999912
Systematic analysis of how phytochrome B dimerization determines its specificity.
Klose C, Venezia F, Hussong A, Kircher S, Schäfer E, Fleck C., Nat Plants 1(), 2015
PMID: 27250256
A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light.
Jones MA, Hu W, Litthauer S, Lagarias JC, Harmer SL., Plant Physiol 169(1), 2015
PMID: 26157113
Phototropins maintain robust circadian oscillation of PSII operating efficiency under blue light.
Litthauer S, Battle MW, Lawson T, Jones MA., Plant J 83(6), 2015
PMID: 26215041
Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation.
Hoang HH, Sechet J, Bailly C, Leymarie J, Corbineau F., Plant Cell Environ 37(6), 2014
PMID: 24256416
Wheels within wheels: the plant circadian system.
Hsu PY, Harmer SL., Trends Plant Sci 19(4), 2014
PMID: 24373845
Plant memory: a tentative model.
Thellier M, Lüttge U., Plant Biol (Stuttg) 15(1), 2013
PMID: 23121044
Unanticipated regulatory roles for Arabidopsis phytochromes revealed by null mutant analysis.
Hu W, Franklin KA, Sharrock RA, Jones MA, Harmer SL, Lagarias JC., Proc Natl Acad Sci U S A 110(4), 2013
PMID: 23302690
Tomato plants overexpressing cryptochrome 2 reveal altered expression of energy and stress-related gene products in response to diurnal cues.
Lopez L, Carbone F, Bianco L, Giuliano G, Facella P, Perrotta G., Plant Cell Environ 35(5), 2012
PMID: 22082487
Redox-mediated mechanisms regulate DNA binding activity of the G-group of basic region leucine zipper (bZIP) transcription factors in Arabidopsis.
Shaikhali J, Norén L, de Dios Barajas-López J, Srivastava V, König J, Sauer UH, Wingsle G, Dietz KJ, Strand Å., J Biol Chem 287(33), 2012
PMID: 22718771
Light inputs shape the Arabidopsis circadian system.
Wenden B, Kozma-Bognár L, Edwards KD, Hall AJ, Locke JC, Millar AJ., Plant J 66(3), 2011
PMID: 21255161
Spatial-specific regulation of root development by phytochromes in Arabidopsis thaliana.
Warnasooriya SN, Montgomery BL., Plant Signal Behav 6(12), 2011
PMID: 22112446
PIF3 is a repressor of chloroplast development.
Stephenson PG, Fankhauser C, Terry MJ., Proc Natl Acad Sci U S A 106(18), 2009
PMID: 19380736
The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.
Sorce C, Picciarelli P, Calistri G, Lercari B, Ceccarelli N., J Plant Physiol 165(5), 2008
PMID: 17706834
Characterization of three members of the multigene family coding for isoforms of the chlorophyll-a/b-binding protein Lhcb1 in spinach
Rea G, Volpicella M, De Leo F, Zolla L, Gallerani R, Ceci LR., Physiol Plant 130(1), 2007
PMID: IND43904470
Genome-wide gene expression analysis reveals a critical role for CRYPTOCHROME1 in the response of Arabidopsis to high irradiance.
Kleine T, Kindgren P, Benedict C, Hendrickson L, Strand A., Plant Physiol 144(3), 2007
PMID: 17478635
Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE.
Kevei E, Gyula P, Hall A, Kozma-Bognár L, Kim WY, Eriksson ME, Tóth R, Hanano S, Fehér B, Southern MM, Bastow RM, Viczián A, Hibberd V, Davis SJ, Somers DE, Nagy F, Millar AJ., Plant Physiol 140(3), 2006
PMID: 16428597
Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana.
Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M., Planta 224(5), 2006
PMID: 16703358
Light activates the degradation of PIL5 protein to promote seed germination through gibberellin in Arabidopsis.
Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G., Plant J 47(1), 2006
PMID: 16740147
Cytokinin affects circadian-clock oscillation in a phytochrome B- and Arabidopsis response regulator 4-dependent manner
Zheng B, Deng Y, Mu J, Ji Z, Xiang T, Niu QW, Chua NH, Zuo J., Physiol Plant 127(2), 2006
PMID: IND43812078
Plant blue-light receptors.
Banerjee R, Batschauer A., Planta 220(3), 2005
PMID: 15714356
Quantitative inference of dynamic regulatory pathways via microarray data.
Chang WC, Li CW, Chen BS., BMC Bioinformatics 6(), 2005
PMID: 15748298
The Vrn-H2 locus is a major determinant of flowering time in a facultative x winter growth habit barley (Hordeum vulgare L.) mapping population.
Karsai I, Szucs P, Mészáros K, Filichkina T, Hayes PM, Skinner JS, Láng L, Bedo Z., Theor Appl Genet 110(8), 2005
PMID: 15834697
The wheat TaGI1, involved in photoperiodic flowering, encodes an Arabidopsis GI ortholog.
Zhao XY, Liu MS, Li JR, Guan CM, Zhang XS., Plant Mol Biol 58(1), 2005
PMID: 16028116
Photomorphogenesis of leaves: shade-avoidance and differentiation of sun and shade leaves.
Kim GT, Yano S, Kozuka T, Tsukaya H., Photochem Photobiol Sci 4(9), 2005
PMID: 16121290
Extension of a genetic network model by iterative experimentation and mathematical analysis.
Locke JC, Southern MM, Kozma-Bognár L, Hibberd V, Brown PE, Turner MS, Millar AJ., Mol Syst Biol 1(), 2005
PMID: 16729048
Cryptochrome 1 contributes to blue-light sensing in pea.
Platten JD, Foo E, Elliott RC, Hecht V, Reid JB, Weller JL., Plant Physiol 139(3), 2005
PMID: 16244154
Light signal transduction in higher plants.
Chen M, Chory J, Fankhauser C., Annu Rev Genet 38(), 2004
PMID: 15568973
Control of Mitochondrial Function via Photosynthetic Redox Signals.
van Lis R, Atteia A., Photosynth Res 79(2), 2004
PMID: 16228388
The RING-finger domain of the fungal repressor crgA is essential for accurate light regulation of carotenogenesis.
Lorca-Pascual JM, Murcia-Flores L, Garre V, Torres-Martínez S, Ruiz-Vázquez RM., Mol Microbiol 52(5), 2004
PMID: 15165247
Constitutive expression of pea Lhcb 1-2 in tobacco affects plant development, morphology and photosynthetic capacity.
Labate MT, Ko K, Ko ZW, Pinto LS, Real MJ, Romano MR, Barja PR, Granell A, Friso G, van Wijk KJ, Brugnoli E, Labate CA., Plant Mol Biol 55(5), 2004
PMID: 15604711
Degradation of phytochrome interacting factor 3 in phytochrome-mediated light signaling.
Park E, Kim J, Lee Y, Shin J, Oh E, Chung WI, Liu JR, Choi G., Plant Cell Physiol 45(8), 2004
PMID: 15356322
Phenotypic characterization of a photomorphogenic mutant.
Fankhauser C, Casal JJ., Plant J 39(5), 2004
PMID: 15315636
Two Arabidopsis circadian oscillators can be distinguished by differential temperature sensitivity.
Michael TP, Salome PA, McClung CR., Proc Natl Acad Sci U S A 100(11), 2003
PMID: 12736379
The circadian clock. A plant's best friend in a spinning world.
Eriksson ME, Millar AJ., Plant Physiol 132(2), 2003
PMID: 12805602
A suite of photoreceptors entrains the plant circadian clock.
Millar AJ., J Biol Rhythms 18(3), 2003
PMID: 12828279
EARLY FLOWERING 4 functions in phytochrome B-regulated seedling de-etiolation.
Khanna R, Kikis EA, Quail PH., Plant Physiol 133(4), 2003
PMID: 14605220
Characterization of the requirements for localization of phytochrome B to nuclear bodies.
Chen M, Schwab R, Chory J., Proc Natl Acad Sci U S A 100(24), 2003
PMID: 14612575

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 12430009
PubMed | Europe PMC

Suchen in

Google Scholar