The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function

Staiger D, Allenbach L, Salathia N, Fiechter V, Davis SJ, Millar AJ, Chory J, Fankhauser C (2003)
Genes & Development 17(2): 256-268.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Staiger, DorotheeUniBi; Allenbach, Laure; Salathia, Neeraj; Fiechter, Vincent; Davis, Seth J.; Millar, Andrew J.; Chory, Joanne; Fankhauser, Christian
Abstract / Bemerkung
Plants possess several photoreceptors to sense the light environment. In Arabidopsis cryptochromes and phytochromes play roles in photomorphogenesis and in the light input pathways that synchronize the circadian clock with the external world. We have identified SRR1 (sensitivity to red light reduced), a gene that plays an important role in phytochrome B (phyB)-mediated light signaling. The recessivesrr1 null allele and phyB mutants display a number of similar phenotypes indicating that SRR1 is required for normal phyB signaling. Genetic analysis suggests that SRR1 works both in the phyB pathway but also independently of phyB. srr1mutants are affected in multiple outputs of the circadian clock in continuous light conditions, including leaf movement and expression of the clock components, CCA1 and TOC1. Clock-regulated gene expression is also impaired during day–night cycles and in constant darkness. The circadian phenotypes of srr1 mutants in all three conditions suggest that SRR1 activity is required for normal oscillator function. The SRR1 gene was identified and shown to code for a protein conserved in numerous eukaryotes including mammals and flies, implicating a conserved role for this protein in both the animal and plant kingdoms.
Erscheinungsjahr
2003
Zeitschriftentitel
Genes & Development
Band
17
Ausgabe
2
Seite(n)
256-268
ISSN
1071-1007
eISSN
0890-9369
Page URI
https://pub.uni-bielefeld.de/record/2439061

Zitieren

Staiger D, Allenbach L, Salathia N, et al. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development. 2003;17(2):256-268.
Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S. J., Millar, A. J., Chory, J., et al. (2003). The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development, 17(2), 256-268. https://doi.org/10.1101/gad.244103
Staiger, Dorothee, Allenbach, Laure, Salathia, Neeraj, Fiechter, Vincent, Davis, Seth J., Millar, Andrew J., Chory, Joanne, and Fankhauser, Christian. 2003. “The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function”. Genes & Development 17 (2): 256-268.
Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S. J., Millar, A. J., Chory, J., and Fankhauser, C. (2003). The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development 17, 256-268.
Staiger, D., et al., 2003. The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development, 17(2), p 256-268.
D. Staiger, et al., “The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function”, Genes & Development, vol. 17, 2003, pp. 256-268.
Staiger, D., Allenbach, L., Salathia, N., Fiechter, V., Davis, S.J., Millar, A.J., Chory, J., Fankhauser, C.: The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function. Genes & Development. 17, 256-268 (2003).
Staiger, Dorothee, Allenbach, Laure, Salathia, Neeraj, Fiechter, Vincent, Davis, Seth J., Millar, Andrew J., Chory, Joanne, and Fankhauser, Christian. “The Arabidopsis SRR1 gene mediates phyB signaling and is required for normal circadian clock function”. Genes & Development 17.2 (2003): 256-268.

Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

58 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

On the move through time - a historical review of plant clock research.
Johansson M, Köster T., Plant Biol (Stuttg) 21 Suppl 1(), 2019
PMID: 29607587
Different copies of SENSITIVITY TO RED LIGHT REDUCED 1 show strong subfunctionalization in Brassica napus.
Schiessl S, Williams N, Specht P, Staiger D, Johansson M., BMC Plant Biol 19(1), 2019
PMID: 31438864
The novel heme-dependent inducible protein, SRRD regulates heme biosynthesis and circadian rhythms.
Adachi Y, Umeda M, Kawazoe A, Sato T, Ohkawa Y, Kitajima S, Izawa S, Sagami I, Taketani S., Arch Biochem Biophys 631(), 2017
PMID: 28802827
Tissue-specific regulation of flowering by photoreceptors.
Endo M, Araki T, Nagatani A., Cell Mol Life Sci 73(4), 2016
PMID: 26621669
LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis.
Park MJ, Kwon YJ, Gil KE, Park CM., BMC Plant Biol 16(1), 2016
PMID: 27207270
Time to flower: interplay between photoperiod and the circadian clock.
Johansson M, Staiger D., J Exp Bot 66(3), 2015
PMID: 25371508
A new set of reversibly photoswitchable fluorescent proteins for use in transgenic plants.
Lummer M, Humpert F, Wiedenlübbert M, Sauer M, Schüttpelz M, Staiger D., Mol Plant 6(5), 2013
PMID: 23434876
The Brassica rapa FLC homologue FLC2 is a key regulator of flowering time, identified through transcriptional co-expression networks.
Xiao D, Zhao JJ, Hou XL, Basnet RK, Carpio DP, Zhang NW, Bucher J, Lin K, Cheng F, Wang XW, Bonnema G., J Exp Bot 64(14), 2013
PMID: 24078668
Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response?
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A., J Exp Bot 63(9), 2012
PMID: 22223810
The regulation of plant growth by the circadian clock.
Farré EM., Plant Biol (Stuttg) 14(3), 2012
PMID: 22284304
Abiotic stress and the plant circadian clock.
Sanchez A, Shin J, Davis SJ., Plant Signal Behav 6(2), 2011
PMID: 21325898
BROTHER OF LUX ARRHYTHMO is a component of the Arabidopsis circadian clock.
Dai S, Wei X, Pei L, Thompson RL, Liu Y, Heard JE, Ruff TG, Beachy RN., Plant Cell 23(3), 2011
PMID: 21447790
Linkage and association mapping of Arabidopsis thaliana flowering time in nature.
Brachi B, Faure N, Horton M, Flahauw E, Vazquez A, Nordborg M, Bergelson J, Cuguen J, Roux F., PLoS Genet 6(5), 2010
PMID: 20463887
The circadian system in higher plants.
Harmer SL., Annu Rev Plant Biol 60(), 2009
PMID: 19575587
Bell-like homeodomain selectively regulates the high-irradiance response of phytochrome A.
Staneloni RJ, Rodriguez-Batiller MJ, Legisa D, Scarpin MR, Agalou A, Cerdán PD, Meijer AH, Ouwerkerk PB, Casal JJ., Proc Natl Acad Sci U S A 106(32), 2009
PMID: 19666535
Identification of flowering genes in strawberry, a perennial SD plant.
Mouhu K, Hytönen T, Folta K, Rantanen M, Paulin L, Auvinen P, Elomaa P., BMC Plant Biol 9(), 2009
PMID: 19785732
The evolutionary conserved BER1 gene is involved in microtubule stability in yeast.
Fiechter V, Cameroni E, Cerutti L, De Virgilio C, Barral Y, Fankhauser C., Curr Genet 53(2), 2008
PMID: 18064466
FIONA1 is essential for regulating period length in the Arabidopsis circadian clock.
Kim J, Kim Y, Yeom M, Kim JH, Nam HG., Plant Cell 20(2), 2008
PMID: 18281507
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D., Plant J 56(2), 2008
PMID: 18573194
Modulation of environmental responses of plants by circadian clocks.
Hotta CT, Gardner MJ, Hubbard KE, Baek SJ, Dalchau N, Suhita D, Dodd AN, Webb AAR., Plant Cell Environ 30(3), 2007
PMID: 17263778
GIGANTEA regulates phytochrome A-mediated photomorphogenesis independently of its role in the circadian clock.
Oliverio KA, Crepy M, Martin-Tryon EL, Milich R, Harmer SL, Putterill J, Yanovsky MJ, Casal JJ., Plant Physiol 144(1), 2007
PMID: 17384162
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J 52(6), 2007
PMID: 17924945
Interplay of circadian clocks and metabolic rhythms.
Wijnen H, Young MW., Annu Rev Genet 40(), 2006
PMID: 17094740
Analysis of phase of LUCIFERASE expression reveals novel circadian quantitative trait loci in Arabidopsis.
Darrah C, Taylor BL, Edwards KD, Brown PE, Hall A, McWatters HG., Plant Physiol 140(4), 2006
PMID: 16461388
Diurnal regulation of plant growth.
Nozue K, Maloof JN., Plant Cell Environ 29(3), 2006
PMID: 17080594
Plant circadian rhythms.
McClung CR., Plant Cell 18(4), 2006
PMID: 16595397
A constitutive shade-avoidance mutant implicates TIR-NBS-LRR proteins in Arabidopsis photomorphogenic development.
Faigón-Soverna A, Harmon FG, Storani L, Karayekov E, Staneloni RJ, Gassmann W, Más P, Casal JJ, Kay SA, Yanovsky MJ., Plant Cell 18(11), 2006
PMID: 17114357
The Arabidopsis pseudo-response regulators, PRR5 and PRR7, coordinately play essential roles for circadian clock function.
Nakamichi N, Kita M, Ito S, Sato E, Yamashino T, Mizuno T., Plant Cell Physiol 46(4), 2005
PMID: 15695441
Pseudo-Response Regulators (PRRs) or True Oscillator Components (TOCs).
Mizuno T, Nakamichi N., Plant Cell Physiol 46(5), 2005
PMID: 15767264
Overexpression of LSH1, a member of an uncharacterised gene family, causes enhanced light regulation of seedling development.
Zhao L, Nakazawa M, Takase T, Manabe K, Kobayashi M, Seki M, Shinozaki K, Matsui M., Plant J 37(5), 2004
PMID: 14871309
Multiple pathways in the decision to flower: enabling, promoting, and resetting.
Boss PK, Bastow RM, Mylne JS, Dean C., Plant Cell 16 Suppl(), 2004
PMID: 15037730
Phytochrome signaling mechanism.
Wang H, Deng XW., Arabidopsis Book 3(), 2004
PMID: 22303226
Phenotypic characterization of a photomorphogenic mutant.
Fankhauser C, Casal JJ., Plant J 39(5), 2004
PMID: 15315636
Phytochrome-mediated light signalling in Arabidopsis.
Schepens I, Duek P, Fankhauser C., Curr Opin Plant Biol 7(5), 2004
PMID: 15337099
Large-scale screening of Arabidopsis circadian clock mutants by a high-throughput real-time bioluminescence monitoring system.
Onai K, Okamoto K, Nishimoto H, Morioka C, Hirano M, Kami-Ike N, Ishiura M., Plant J 40(1), 2004
PMID: 15361136
The circadian clock. A plant's best friend in a spinning world.
Eriksson ME, Millar AJ., Plant Physiol 132(2), 2003
PMID: 12805602
Light and circadian regulation in the expression of LHY and Lhcb genes in Phaseolus vulgaris.
Kaldis AD, Kousidis P, Kesanopoulos K, Prombona A., Plant Mol Biol 52(5), 2003
PMID: 14558659
The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis.
Kuno N, Møller SG, Shinomura T, Xu X, Chua NH, Furuya M., Plant Cell 15(10), 2003
PMID: 14523250
Comparative genetic studies on the APRR5 and APRR7 genes belonging to the APRR1/TOC1 quintet implicated in circadian rhythm, control of flowering time, and early photomorphogenesis.
Yamamoto Y, Sato E, Shimizu T, Nakamich N, Sato S, Kato T, Tabata S, Nagatani A, Yamashino T, Mizuno T., Plant Cell Physiol 44(11), 2003
PMID: 14634148
A growth regulatory loop that provides homeostasis to phytochrome a signaling.
Lariguet P, Boccalandro HE, Alonso JM, Ecker JR, Chory J, Casal JJ, Fankhauser C., Plant Cell 15(12), 2003
PMID: 14615593

69 References

Daten bereitgestellt von Europe PubMed Central.

Critical role for CCA1 and LHY in maintaining circadian rhythmicity in Arabidopsis.
Alabadi D, Yanovsky MJ, Mas P, Harmer SL, Kay SA., Curr. Biol. 12(9), 2002
PMID: 12007421
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
A deletion in the PHYD gene of the Arabidopsis Wassilewskija ecotype defines a role for phytochrome D in red/far-red light sensing.
Aukerman MJ, Hirschfeld M, Wester L, Weaver M, Clack T, Amasino RM, Sharrock RA., Plant Cell 9(8), 1997
PMID: 9286109
Phototransduction by retinal ganglion cells that set the circadian clock.
Berson DM, Dunn FA, Takao M., Science 295(5557), 2002
PMID: 11834835
Cryptochromes: blue light receptors for plants and animals.
Cashmore AR, Jarillo JA, Wu YJ, Liu D., Science 284(5415), 1999
PMID: 10221900
ELF3 modulates resetting of the circadian clock in Arabidopsis.
Covington MF, Panda S, Liu XL, Strayer CA, Wagner DR, Kay SA., Plant Cell 13(6), 2001
PMID: 11402162
Neurospora wc-1 and wc-2: transcription, photoresponses, and the origins of circadian rhythmicity.
Crosthwaite SK, Dunlap JC, Loros JJ., Science 276(5313), 1997
PMID: 9115195
Circadian photoperception.
Devlin PF, Kay SA., Annu. Rev. Physiol. 63(), 2001
PMID: 11181972
The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana.
Doyle MR, Davis SJ, Bastow RM, McWatters HG, Kozma-Bognar L, Nagy F, Millar AJ, Amasino RM., Nature 419(6902), 2002
PMID: 12214234
A unique circadian-rhythm photoreceptor.
Emery P, Stanewsky R, Hall JC, Rosbash M., Nature 404(6777), 2000
PMID: 10761904
Phytochromes as light-modulated protein kinases.
Fankhauser C., Semin. Cell Dev. Biol. 11(6), 2000
PMID: 11145876
Brassinosteroid-insensitive-1 is a ubiquitously expressed leucine-rich repeat receptor serine/threonine kinase.
Friedrichsen DM, Joazeiro CA, Li J, Hunter T, Chory J., Plant Physiol. 123(4), 2000
PMID: 10938344
White Collar-1, a circadian blue light photoreceptor, binding to the frequency promoter.
Froehlich AC, Liu Y, Loros JJ, Dunlap JC., Science 297(5582), 2002
PMID: 12098706
A draft sequence of the rice genome (Oryza sativa L. ssp. japonica).
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S., Science 296(5565), 2002
PMID: 11935018
The role of CCA1 and LHY in the plant circadian clock.
Green RM, Tobin EM., Dev. Cell 2(5), 2002
PMID: 12015957
Circadian rhythms confer a higher level of fitness to Arabidopsis plants.
Green RM, Tingay S, Wang ZY, Tobin EM., Plant Physiol. 129(2), 2002
PMID: 12068102
The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation.
Hajdukiewicz P, Svab Z, Maliga P., Plant Mol. Biol. 25(6), 1994
PMID: 7919218
Distinct regulation of CAB and PHYB gene expression by similar circadian clocks.
Hall A, Kozma-Bognar L, Bastow RM, Nagy F, Millar AJ., Plant J. 32(4), 2002
PMID: 12445124
Orchestrated transcription of key pathways in Arabidopsis by the circadian clock.
Harmer SL, Hogenesch JB, Straume M, Chang HS, Han B, Zhu T, Wang X, Kreps JA, Kay SA., Science 290(5499), 2000
PMID: 11118138
White collar-1, a DNA binding transcription factor and a light sensor.
He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y., Science 297(5582), 2002
PMID: 12098705
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
Conditional circadian dysfunction of the Arabidopsis early-flowering 3 mutant.
Hicks KA, Millar AJ, Carre IA, Somers DE, Straume M, Meeks-Wagner DR, Kay SA., Science 274(5288), 1996
PMID: 8864121
The genetics of phytochrome signalling in Arabidopsis.
Hudson ME., Semin. Cell Dev. Biol. 11(6), 2000
PMID: 11145877
GIGANTEA is a nuclear protein involved in phytochrome signaling in Arabidopsis.
Huq E, Tepperman JM, Quail PH., Proc. Natl. Acad. Sci. U.S.A. 97(17), 2000
PMID: 10920210
An Arabidopsis mutant defective in the plastid general protein import apparatus.
Jarvis P, Chen LJ, Li H, Peto CA, Fankhauser C, Chory J., Science 282(5386), 1998
PMID: 9756470
A new role for cryptochrome in a Drosophila circadian oscillator.
Krishnan B, Levine JD, Lynch MK, Dowse HB, Funes P, Hall JC, Hardin PE, Dryer SE., Nature 411(6835), 2001
PMID: 11357134
Structure and expression of three light-harvesting chlorophyll a/b-binding protein genes in Arabidopsis thaliana.
Leutwiler LS, Meyerowitz EM, Tobin EM., Nucleic Acids Res. 14(10), 1986
PMID: 3012462
Blue light receptors and signal transduction.
Lin C., Plant Cell 14 Suppl(), 2002
PMID: 12045278
ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway.
Liu XL, Covington MF, Fankhauser C, Chory J, Wagner DR., Plant Cell 13(6), 2001
PMID: 11402161
Direct targeting of light signals to a promoter element-bound transcription factor.
Martinez-Garcia JF, Huq E, Quail PH., Science 288(5467), 2000
PMID: 10797009
The ELF3 zeitnehmer regulates light signalling to the circadian clock.
McWatters HG, Bastow RM, Hall A, Millar AJ., Nature 408(6813), 2000
PMID: 11130072
LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis.
Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre IA, Coupland G., Dev. Cell 2(5), 2002
PMID: 12015970
Control of flowering time: interacting pathways as a basis for diversity.
Mouradov A, Cremer F, Coupland G., Plant Cell 14 Suppl(), 2002
PMID: 12045273
FKF1, a clock-controlled gene that regulates the transition to flowering in Arabidopsis.
Nelson DC, Lasswell J, Rogg LE, Cohen MA, Bartel B., Cell 101(3), 2000
PMID: 10847687
Photosensory perception and signalling in plant cells: new paradigms?
Quail PH., Curr. Opin. Cell Biol. 14(2), 2002
PMID: 11891117
Phytochrome photosensory signalling networks.
Quail PH., Nat. Rev. Mol. Cell Biol. 3(2), 2002
PMID: 11836510
Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time.
Reed JW, Nagpal P, Bastow RM, Solomon KS, Dowson-Day MJ, Elumalai RP, Millar AJ., Plant Physiol. 122(4), 2000
PMID: 10759510
Floral responses to photoperiod are correlated with the timing of rhythmic expression relative to dawn and dusk in Arabidopsis.
Roden LC, Song HR, Jackson S, Morris K, Carre IA., Proc. Natl. Acad. Sci. U.S.A. 99(20), 2002
PMID: 12271123
The out of phase 1 mutant defines a role for PHYB in circadian phase control in Arabidopsis.
Salome PA, Michael TP, Kearns EV, Fett-Neto AG, Sharrock RA, McClung CR., Plant Physiol. 129(4), 2002
PMID: 12177480
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
Microarray analysis of diurnal and circadian-regulated genes in Arabidopsis.
Schaffer R, Landgraf J, Accerbi M, Simon V, Larson M, Wisman E., Plant Cell 13(1), 2001
PMID: 11158533
CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock.
Schmitz O, Katayama M, Williams SB, Kondo T, Golden SS., Science 289(5480), 2000
PMID: 10926536
A role for LKP2 in the circadian clock of Arabidopsis.
Schultz TF, Kiyosue T, Yanovsky M, Wada M, Kay SA., Plant Cell 13(12), 2001
PMID: 11752379
Genome-wide epistatic interaction analysis reveals complex genetic determinants of circadian behavior in mice.
Shimomura K, Low-Zeddies SS, King DP, Steeves TD, Whiteley A, Kushla J, Zemenides PD, Lin A, Vitaterna MH, Churchill GA, Takahashi JS., Genome Res. 11(6), 2001
PMID: 11381025
Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock.
Somers DE, Devlin PF, Kay SA., Science 282(5393), 1998
PMID: 9822379
ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis.
Somers DE, Schultz TF, Milnamow M, Kay SA., Cell 101(3), 2000
PMID: 10847686
Extensive and divergent circadian gene expression in liver and heart.
Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ., Nature 417(6884), 2002
PMID: 11967526
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA., Science 289(5480), 2000
PMID: 10926537
The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis.
Sugano S, Andronis C, Ong MS, Green RM, Tobin EM., Proc. Natl. Acad. Sci. U.S.A. 96(22), 1999
PMID: 10535927
Natural allelic variation identifies new genes in the Arabidopsis circadian system.
Swarup K, Alonso-Blanco C, Lynn JR, Michaels SD, Amasino RM, Koornneef M, Millar AJ., Plant J. 20(1), 1999
PMID: 10571866
Activation tagging in Arabidopsis.
Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J., Plant Physiol. 122(4), 2000
PMID: 10759496
Molecular basis of seasonal time measurement in Arabidopsis.
Yanovsky MJ, Kay SA., Nature 419(6904), 2002
PMID: 12239570
A quadruple photoreceptor mutant still keeps track of time.
Yanovsky MJ, Mazzella MA, Casal JJ., Curr. Biol. 10(16), 2000
PMID: 10985392
Time zones: a comparative genetics of circadian clocks.
Young MW, Kay SA., Nat. Rev. Genet. 2(9), 2001
PMID: 11533719
Effects of synergistic signaling by phytochrome A and cryptochrome1 on circadian clock-regulated catalase expression.
Zhong HH, Resnick AS, Straume M, Robertson McClung C., Plant Cell 9(6), 1997
PMID: 9212468
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12533513
PubMed | Europe PMC

Suchen in

Google Scholar