The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA

Staiger D, Zecca L, Kirk DAW, Apel K, Eckstein L (2003)
The Plant Journal 33(2): 361-371.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Staiger, DorotheeUniBi; Zecca, Laura; Kirk, Dominika A. Wieczorek; Apel, Klaus; Eckstein, Luca
Abstract / Bemerkung
The clock-regulated RNA-binding protein AtGRP7 is part of a negative feedback circuit through which the protein influences circadian oscillations of its own transcript. Constitutive overexpression of AtGRP7 in transgenic plants leads to the appearance of a low amount of an alternatively spliced Atgrp7 transcript with a premature stop codon. It is generated by the use of a 5′ cryptic splice site in the middle of the intron at the expense of the fully spliced mRNA, indicating a role for AtGRP7 in splice site selection. Accelerated decay of this transcript accounts for its low steady state abundance. This implicates a mechanism for the AtGRP7 feedback loop: Atgrp7 expression is downregulated, as AtGRP7 protein accumulates over the circadian cycle, partly by the generation of an alternate transcript that due to its instability does not accumulate to high levels and does not produce a functional protein. Recombinant AtGRP7 protein specifically interacts with the 3′ untranslated region and the intron of its transcript, suggesting that the shift in splice site selection and downregulation involves binding of AtGRP7 to its pre-mRNA. AtGRP7 also influences the choice of splice sites in the Atgrp8 transcript encoding a related RNA-binding protein, favoring the production of an alternatively spliced, unstable Atgrp8 transcript. This conservation points to the importance of this regulatory mechanism to control the level of the clock-regulated glycine-rich RNA-binding proteins and shows how AtGRP7 can control abundance of target transcripts.
Stichworte
negative feedback loop; alternative splicing; Arabidopsis thaliana; circadian rhythm
Erscheinungsjahr
2003
Zeitschriftentitel
The Plant Journal
Band
33
Ausgabe
2
Seite(n)
361-371
ISSN
0960-7412
eISSN
1365-313X
Page URI
https://pub.uni-bielefeld.de/record/2439053

Zitieren

Staiger D, Zecca L, Kirk DAW, Apel K, Eckstein L. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal. 2003;33(2):361-371.
Staiger, D., Zecca, L., Kirk, D. A. W., Apel, K., & Eckstein, L. (2003). The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal, 33(2), 361-371. https://doi.org/10.1046/j.1365-313X.2003.01629.x
Staiger, Dorothee, Zecca, Laura, Kirk, Dominika A. Wieczorek, Apel, Klaus, and Eckstein, Luca. 2003. “The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA”. The Plant Journal 33 (2): 361-371.
Staiger, D., Zecca, L., Kirk, D. A. W., Apel, K., and Eckstein, L. (2003). The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal 33, 361-371.
Staiger, D., et al., 2003. The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal, 33(2), p 361-371.
D. Staiger, et al., “The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA”, The Plant Journal, vol. 33, 2003, pp. 361-371.
Staiger, D., Zecca, L., Kirk, D.A.W., Apel, K., Eckstein, L.: The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA. The Plant Journal. 33, 361-371 (2003).
Staiger, Dorothee, Zecca, Laura, Kirk, Dominika A. Wieczorek, Apel, Klaus, and Eckstein, Luca. “The circadian clock regulated RNA-binding protein AtGRP7 autoregulates its expression by influencing alternative splicing of its own pre-mRNA”. The Plant Journal 33.2 (2003): 361-371.

119 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity.
Zhang J, Ren Z, Zhou Y, Ma Z, Ma Y, Hou D, Xu Z, Huang X., Int J Mol Sci 20(5), 2019
PMID: 30857376
The Plant Circadian Oscillator.
McClung CR., Biology (Basel) 8(1), 2019
PMID: 30870980
Regulation and Evolution of NLR Genes: A Close Interconnection for Plant Immunity.
Borrelli GM, Mazzucotelli E, Marone D, Crosatti C, Michelotti V, Valè G, Mastrangelo AM., Int J Mol Sci 19(6), 2018
PMID: 29867062
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation.
Mateos JL, de Leone MJ, Torchio J, Reichel M, Staiger D., Genes (Basel) 9(12), 2018
PMID: 30544736
Tick Tock: Circadian Regulation of Plant Innate Immunity.
Lu H, McClung CR, Zhang C., Annu Rev Phytopathol 55(), 2017
PMID: 28590878
Up-Frameshift Protein UPF1 Regulates Neurospora crassa Circadian and Diurnal Growth Rhythms.
Wu Y, Zhang Y, Sun Y, Yu J, Wang P, Ma H, Chen S, Ma L, Zhang D, He Q, Guo J., Genetics 206(4), 2017
PMID: 28600326
Structural disorder in plant proteins: where plasticity meets sessility.
Covarrubias AA, Cuevas-Velazquez CL, Romero-Pérez PS, Rendón-Luna DF, Chater CCC., Cell Mol Life Sci 74(17), 2017
PMID: 28643166
Adaptation of iCLIP to plants determines the binding landscape of the clock-regulated RNA-binding protein AtGRP7.
Meyer K, Köster T, Nolte C, Weinholdt C, Lewinski M, Grosse I, Staiger D., Genome Biol 18(1), 2017
PMID: 29084609
Transcriptomic, proteomic and metabolic changes in Arabidopsis thaliana leaves after the onset of illumination.
Liang C, Cheng S, Zhang Y, Sun Y, Fernie AR, Kang K, Panagiotou G, Lo C, Lim BL., BMC Plant Biol 16(), 2016
PMID: 26865323
Alternative Splicing Substantially Diversifies the Transcriptome during Early Photomorphogenesis and Correlates with the Energy Availability in Arabidopsis.
Hartmann L, Drewe-Boß P, Wießner T, Wagner G, Geue S, Lee HC, Obermüller DM, Kahles A, Behr J, Sinz FH, Rätsch G, Wachter A., Plant Cell 28(11), 2016
PMID: 27803310
Environmental stresses modulate abundance and timing of alternatively spliced circadian transcripts in Arabidopsis.
Filichkin SA, Cumbie JS, Dharmawardhana P, Jaiswal P, Chang JH, Palusa SG, Reddy AS, Megraw M, Mockler TC., Mol Plant 8(2), 2015
PMID: 25680774
Proteomics of methyl jasmonate induced defense response in maize leaves against Asian corn borer.
Zhang YT, Zhang YL, Chen SX, Yin GH, Yang ZZ, Lee S, Liu CG, Zhao DD, Ma YK, Song FQ, Bennett JW, Yang FS., BMC Genomics 16(), 2015
PMID: 25885025
The Circadian Clock Modulates Global Daily Cycles of mRNA Ribosome Loading.
Missra A, Ernest B, Lohoff T, Jia Q, Satterlee J, Ke K, von Arnim AG., Plant Cell 27(9), 2015
PMID: 26392078
Effects of Fe deficiency on the protein profile of Brassica napus phloem sap.
Gutierrez-Carbonell E, Lattanzio G, Albacete A, Rios JJ, Kehr J, Abadía A, Grusak MA, Abadía J, López-Millán AF., Proteomics 15(22), 2015
PMID: 26316195
Salicylic acid-dependent and -independent impact of an RNA-binding protein on plant immunity.
Hackmann C, Korneli C, Kutyniok M, Köster T, Wiedenlübbert M, Müller C, Staiger D., Plant Cell Environ 37(3), 2014
PMID: 23961939
Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits
Müller GL, Triassi A, Alvarez CE, Falcone Ferreyra ML, Andreo CS, Lara MV, Drincovich MF., Funct Plant Biol 41(4), 2014
PMID: IND500739485
Structural basis of nucleic acid binding by Nicotiana tabacum glycine-rich RNA-binding protein: implications for its RNA chaperone function.
Khan F, Daniëls MA, Folkers GE, Boelens R, Saqlan Naqvi SM, van Ingen H., Nucleic Acids Res 42(13), 2014
PMID: 24957607
HnRNP-like proteins as post-transcriptional regulators.
Yeap WC, Namasivayam P, Ho CL., Plant Sci 227(), 2014
PMID: 25219311
O-GlcNAc-mediated interaction between VER2 and TaGRP2 elicits TaVRN1 mRNA accumulation during vernalization in winter wheat.
Xiao J, Xu S, Li C, Xu Y, Xing L, Niu Y, Huan Q, Tang Y, Zhao C, Wagner D, Gao C, Chong K., Nat Commun 5(), 2014
PMID: 25091017
Mutational definition of binding requirements of an hnRNP-like protein in Arabidopsis using fluorescence correlation spectroscopy.
Leder V, Lummer M, Tegeler K, Humpert F, Lewinski M, Schüttpelz M, Staiger D., Biochem Biophys Res Commun 453(1), 2014
PMID: 25251471
Role for LSM genes in the regulation of circadian rhythms.
Perez-Santángelo S, Mancini E, Francey LJ, Schlaen RG, Chernomoretz A, Hogenesch JB, Yanovsky MJ., Proc Natl Acad Sci U S A 111(42), 2014
PMID: 25288739
Genomic analysis reveals novel connections between alternative splicing and circadian regulatory networks.
Perez-Santángelo S, Schlaen RG, Yanovsky MJ., Brief Funct Genomics 12(1), 2013
PMID: 23165351
Emerging role for RNA-based regulation in plant immunity.
Staiger D, Korneli C, Lummer M, Navarro L., New Phytol 197(2), 2013
PMID: 23163405
Pseudomonas HopU1 modulates plant immune receptor levels by blocking the interaction of their mRNAs with GRP7.
Nicaise V, Joe A, Jeong BR, Korneli C, Boutrot F, Westedt I, Staiger D, Alfano JR, Zipfel C., EMBO J 32(5), 2013
PMID: 23395902
RNA-seq of Arabidopsis pollen uncovers novel transcription and alternative splicing.
Loraine AE, McCormick S, Estrada A, Patel K, Qin P., Plant Physiol 162(2), 2013
PMID: 23590974
Ribonucleoprotein complexes that control circadian clocks.
Wang D, Liang X, Chen X, Guo J., Int J Mol Sci 14(5), 2013
PMID: 23698761
Small changes in ambient temperature affect alternative splicing in Arabidopsis thaliana.
Streitner C, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Plant Signal Behav 8(7), 2013
PMID: 23656882
Crosstalk between the circadian clock and innate immunity in Arabidopsis.
Zhang C, Xie Q, Anderson RG, Ng G, Seitz NC, Peterson T, McClung CR, McDowell JM, Kong D, Kwak JM, Lu H., PLoS Pathog 9(6), 2013
PMID: 23754942
Complexity of the alternative splicing landscape in plants.
Reddy AS, Marquez Y, Kalyna M, Barta A., Plant Cell 25(10), 2013
PMID: 24179125
EgRBP42 encoding an hnRNP-like RNA-binding protein from Elaeis guineensis Jacq. is responsive to abiotic stresses.
Yeap WC, Ooi TE, Namasivayam P, Kulaveerasingam H, Ho CL., Plant Cell Rep 31(10), 2012
PMID: 22699852
An hnRNP-like RNA-binding protein affects alternative splicing by in vivo interaction with transcripts in Arabidopsis thaliana.
Streitner C, Köster T, Simpson CG, Shaw P, Danisman S, Brown JW, Staiger D., Nucleic Acids Res 40(22), 2012
PMID: 23042250
Spotlight on post-transcriptional control in the circadian system.
Staiger D, Köster T., Cell Mol Life Sci 68(1), 2011
PMID: 20803230
Post-transcriptional control of circadian rhythms.
Kojima S, Shingle DL, Green CB., J Cell Sci 124(pt 3), 2011
PMID: 21242310
Identification and differential induction of the expression of aquaporins by salinity in broccoli plants.
Muries B, Faize M, Carvajal M, Martínez-Ballesta Mdel C., Mol Biosyst 7(4), 2011
PMID: 21321750
Reversible photoswitchable DRONPA-s monitors nucleocytoplasmic transport of an RNA-binding protein in transgenic plants.
Lummer M, Humpert F, Steuwe C, Caesar K, Schüttpelz M, Sauer M, Staiger D., Traffic 12(6), 2011
PMID: 21453442
RNA-Binding Proteins in Plant Immunity.
Woloshen V, Huang S, Li X., J Pathog 2011(), 2011
PMID: 22567326
Alternative splicing at the right time.
Sanchez SE, Petrillo E, Kornblihtt AR, Yanovsky MJ., RNA Biol 8(6), 2011
PMID: 21941124
A proteomic analysis of oligo(dT)-bound mRNP containing oxidative stress-induced Arabidopsis thaliana RNA-binding proteins ATGRP7 and ATGRP8.
Schmidt F, Marnef A, Cheung MK, Wilson I, Hancock J, Staiger D, Ladomery M., Mol Biol Rep 37(2), 2010
PMID: 19672695
Global transcript profiling of transgenic plants constitutively overexpressing the RNA-binding protein AtGRP7.
Streitner C, Hennig L, Korneli C, Staiger D., BMC Plant Biol 10(), 2010
PMID: 20946635
Hubs and bottlenecks in plant molecular signalling networks.
Dietz KJ, Jacquot JP, Harris G., New Phytol 188(4), 2010
PMID: 20958306
A putative RNA-binding protein positively regulates salicylic acid-mediated immunity in Arabidopsis.
Qi Y, Tsuda K, Joe A, Sato M, Nguyen le V, Glazebrook J, Alfano JR, Cohen JD, Katagiri F., Mol Plant Microbe Interact 23(12), 2010
PMID: 20636102
Network news: prime time for systems biology of the plant circadian clock.
McClung CR, Gutiérrez RA., Curr Opin Genet Dev 20(6), 2010
PMID: 20889330
Alternative splicing of anciently exonized 5S rRNA regulates plant transcription factor TFIIIA.
Fu Y, Bannach O, Chen H, Teune JH, Schmitz A, Steger G, Xiong L, Barbazuk WB., Genome Res 19(5), 2009
PMID: 19211543
A plant 5S ribosomal RNA mimic regulates alternative splicing of transcription factor IIIA pre-mRNAs.
Hammond MC, Wachter A, Breaker RR., Nat Struct Mol Biol 16(5), 2009
PMID: 19377483
Quantitative analysis of single-molecule RNA-protein interaction.
Fuhrmann A, Schoening JC, Anselmetti D, Staiger D, Ros R., Biophys J 96(12), 2009
PMID: 19527663
Proteomics of Arabidopsis redox proteins in response to methyl jasmonate.
Alvarez S, Zhu M, Chen S., J Proteomics 73(1), 2009
PMID: 19628057
Characterization of wound-responsive RNA-binding proteins and their splice variants in Arabidopsis.
Bove J, Kim CY, Gibson CA, Assmann SM., Plant Mol Biol 67(1-2), 2008
PMID: 18278441
Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulating stomata opening and closing in Arabidopsis thaliana.
Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo Y, Oh SH, Han YS, Kang H., Plant J 55(3), 2008
PMID: 18410480
The small glycine-rich RNA binding protein AtGRP7 promotes floral transition in Arabidopsis thaliana.
Streitner C, Danisman S, Wehrle F, Schöning JC, Alfano JR, Staiger D., Plant J 56(2), 2008
PMID: 18573194
Whole genome transcriptome polymorphisms in Arabidopsis thaliana.
Zhang X, Byrnes JK, Gal TS, Li WH, Borevitz JO., Genome Biol 9(11), 2008
PMID: 19025653
Regulation of output from the plant circadian clock.
Yakir E, Hilman D, Harir Y, Green RM., FEBS J 274(2), 2007
PMID: 17229141
A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity.
Fu ZQ, Guo M, Jeong BR, Tian F, Elthon TE, Cerny RL, Staiger D, Alfano JR., Nature 447(7142), 2007
PMID: 17450127
Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity.
Green CB, Douris N, Kojima S, Strayer CA, Fogerty J, Lourim D, Keller SR, Besharse JC., Proc Natl Acad Sci U S A 104(23), 2007
PMID: 17517647
Blooming time for plant glycine-rich proteins.
Fusaro AF, Sachetto-Martins G., Plant Signal Behav 2(5), 2007
PMID: 19704608
Auto-regulation of the circadian slave oscillator component AtGRP7 and regulation of its targets is impaired by a single RNA recognition motif point mutation.
Schöning JC, Streitner C, Page DR, Hennig S, Uchida K, Wolf E, Furuya M, Staiger D., Plant J 52(6), 2007
PMID: 17924945
Proteome analysis of Arabidopsis leaf peroxisomes reveals novel targeting peptides, metabolic pathways, and defense mechanisms.
Reumann S, Babujee L, Ma C, Wienkoop S, Siemsen T, Antonicelli GE, Rasche N, Lüder F, Weckwerth W, Jahn O., Plant Cell 19(10), 2007
PMID: 17951448
Gene expression and genetic mapping analyses of a perennial ryegrass glycine-rich RNA-binding protein gene suggest a role in cold adaptation.
Shinozuka H, Hisano H, Yoneyama S, Shimamoto Y, Jones ES, Forster JW, Yamada T, Kanazawa A., Mol Genet Genomics 275(4), 2006
PMID: 16614778
Calmodulin interacts with and regulates the RNA-binding activity of an Arabidopsis polyadenylation factor subunit.
Delaney KJ, Xu R, Zhang J, Li QQ, Yun KY, Falcone DL, Hunt AG., Plant Physiol 140(4), 2006
PMID: 16500995
ABA-responsive RNA-binding proteins are involved in chloroplast and stromule function in Arabidopsis seedlings.
Raab S, Toth Z, de Groot C, Stamminger T, Hoth S., Planta 224(4), 2006
PMID: 16633814
How plants tell the time.
Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, Webb AA., Biochem J 397(1), 2006
PMID: 16761955
Evolutionary conservation and regulation of particular alternative splicing events in plant SR proteins.
Kalyna M, Lopato S, Voronin V, Barta A., Nucleic Acids Res 34(16), 2006
PMID: 16936312
mRNA surveillance of expressed pseudogenes in C. elegans.
Mitrovich QM, Anderson P., Curr Biol 15(10), 2005
PMID: 15916954
Proteomic identification of putative plasmodesmatal proteins from Chara corallina.
Faulkner CR, Blackman LM, Cordwell SJ, Overall RL., Proteomics 5(11), 2005
PMID: 16075417
Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis.
Mizoguchi T, Wright L, Fujiwara S, Cremer F, Lee K, Onouchi H, Mouradov A, Fowler S, Kamada H, Putterill J, Coupland G., Plant Cell 17(8), 2005
PMID: 16006578
Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway.
Lidder P, Gutiérrez RA, Salomé PA, McClung CR, Green PJ., Plant Physiol 138(4), 2005
PMID: 16055688
UPF3 suppresses aberrant spliced mRNA in Arabidopsis.
Hori K, Watanabe Y., Plant J 43(4), 2005
PMID: 16098107
Posttranscriptional control of plant development.
Cheng Y, Chen X., Curr Opin Plant Biol 7(1), 2004
PMID: 14732437
A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C.
Lim MH, Kim J, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM., Plant Cell 16(3), 2004
PMID: 14973162
Diversification of genes encoding mei2 -like RNA binding proteins in plants.
Anderson GH, Alvarez ND, Gilman C, Jeffares DC, Trainor VC, Hanson MR, Veit B., Plant Mol Biol 54(5), 2004
PMID: 15356386
The circadian RNA-binding protein CHLAMY 1 represents a novel type heteromer of RNA recognition motif and lysine homology domain-containing subunits.
Zhao B, Schneid C, Iliev D, Schmidt EM, Wagner V, Wollnik F, Mittag M., Eukaryot Cell 3(3), 2004
PMID: 15190002
The evolving roles of alternative splicing.
Lareau LF, Green RE, Bhatnagar RS, Brenner SE., Curr Opin Struct Biol 14(3), 2004
PMID: 15193306
Arabidopsis transportin1 is the nuclear import receptor for the circadian clock-regulated RNA-binding protein AtGRP7.
Ziemienowicz A, Haasen D, Staiger D, Merkle T., Plant Mol Biol 53(1-2), 2003
PMID: 14756317
The novel MYB protein EARLY-PHYTOCHROME-RESPONSIVE1 is a component of a slave circadian oscillator in Arabidopsis.
Kuno N, Møller SG, Shinomura T, Xu X, Chua NH, Furuya M., Plant Cell 15(10), 2003
PMID: 14523250

45 References

Daten bereitgestellt von Europe PubMed Central.

Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock.
Alabadi D, Oyama T, Yanovsky MJ, Harmon FG, Mas P, Kay SA., Science 293(5531), 2001
PMID: 11486091
All in good time: the Arabidopsis circadian clock.
Barak S, Tobin EM, Andronis C, Sugano S, Green RM., Trends Plant Sci. 5(12), 2000
PMID: 11120473
In planta Agrobacterium-mediated gene transfer by inflitration of adult Arabidopsis thaliana plants
Bechtold, C. R. Acad. Sci. Paris, Sciences de la vie/life Science 316(), 1993
SPLICE SITE SELECTION IN PLANT PRE-mRNA SPLICING.
Brown JW, Simpson CG., Annu. Rev. Plant Physiol. Plant Mol. Biol. 49(), 1998
PMID: 15012228
A regulatory mechanism that detects premature nonsense codons in T-cell receptor transcripts in vivo is reversed by protein synthesis inhibitors in vitro.
Carter MS, Doskow J, Morris P, Li S, Nhim RP, Sandstedt S, Wilkinson MF., J. Biol. Chem. 270(48), 1995
PMID: 7499432
Molecular bases for circadian clocks.
Dunlap JC., Cell 96(2), 1999
PMID: 9988221
The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo
Gallie, Nucl. Acids Res. 15(), 1987
Pre-mRNA splicing in the new millennium.
Hastings ML, Krainer AR., Curr. Opin. Cell Biol. 13(3), 2001
PMID: 11343900
AtGRP7, a nuclear RNA-binding protein as a component of a circadian-regulated negative feedback loop in Arabidopsis thaliana.
Heintzen C, Nater M, Apel K, Staiger D., Proc. Natl. Acad. Sci. U.S.A. 94(16), 1997
PMID: 9238008
cDNA structure, expression and nucleic acid-binding properties of three RNA-binding proteins in tobacco: occurrence of tissue-specific alternative splicing
Hirose, Nucl. Acids Res. 21(), 1993
A frameshift mutation prevents Kunitz trypsin inhibitor mRNA accumulation in soybean embryos.
Jofuku KD, Schipper RD, Goldberg RB., Plant Cell 1(4), 1989
PMID: 2562563
Stability of a PKCI-1-related mRNA is controlled by the splicing factor ASF/SF2: a novel function for SR proteins.
Lemaire R, Prasad J, Kashima T, Gustafson J, Manley JL, Lafyatis R., Genes Dev. 16(5), 2002
PMID: 11877379
atSRp30, one of two SF2/ASF-like proteins from Arabidopsis thaliana, regulates splicing of specific plant genes.
Lopato S, Kalyna M, Dorner S, Kobayashi R, Krainer AR, Barta A., Genes Dev. 13(8), 1999
PMID: 10215626
Pre-mRNA splicing in higher plants.
Lorkovic ZJ, Wieczorek Kirk DA, Lambermon MH, Filipowicz W., Trends Plant Sci. 5(4), 2000
PMID: 10740297
How a circadian clock adapts to seasonal decreases in temperature and day length.
Majercak J, Sidote D, Hardin PE, Edery I., Neuron 24(1), 1999
PMID: 10677039
CIRCADIAN RHYTHMS IN PLANTS.
McClung CR., Annu. Rev. Plant Physiol. Plant Mol. Biol. 52(), 2001
PMID: 11337395
Circadian clock mutants in Arabidopsis identified by luciferase imaging.
Millar AJ, Carre IA, Strayer CA, Chua NH, Kay SA., Science 267(5201), 1995
PMID: 7855595
A revised method for rapid growth and bio assays with tobacco tissue cultures
Murashige, Physiol. Plant. 15(), 1962
Premature termination codons destabilize ferredoxin-1 mRNA when ferredoxin-1 is translated.
Petracek ME, Nuygen T, Thompson WF, Dickey LF., Plant J. 21(6), 2000
PMID: 10758507
Nuclear pre-mRNA splicing in plants
Reddy, Crit. Rev. Plant Sci. 20(), 2001
The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering.
Schaffer R, Ramsay N, Samach A, Corden S, Putterill J, Carre IA, Coupland G., Cell 93(7), 1998
PMID: 9657154
The physiology and molecular bases of the plant circadian clock.
Somers DE., Plant Physiol. 121(1), 1999
PMID: 10482655
The circadian system of Arabidopsis thaliana: forward and reverse genetic approaches.
Staiger D, Heintzen C., Chronobiol. Int. 16(1), 1999
PMID: 10023572
Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog.
Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, Kay SA., Science 289(5480), 2000
PMID: 10926537
Time zones: a comparative genetics of circadian clocks.
Young MW, Kay SA., Nat. Rev. Genet. 2(9), 2001
PMID: 11533719
Evidence that a regulatory gene autoregulates splicing of its transcript.
Zachar Z, Chou TB, Bingham PM., EMBO J. 6(13), 1987
PMID: 3443103
Analysis of autoregulation at the level of pre-mRNA splicing of the suppressor-of-white-apricot gene in Drosophila.
Zachar Z, Chou TB, Kramer J, Mims IP, Bingham PM., Genetics 137(1), 1994
PMID: 8056305
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 12535349
PubMed | Europe PMC

Suchen in

Google Scholar