Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803

Schriek S, Rückert C, Staiger D, Pistorius EK, Michel K-P (2007)
BMC Genomics 8(1): 437.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Schriek, Sarah; Rückert, ChristianUniBi ; Staiger, DorotheeUniBi; Pistorius, Elfriede K.; Michel, Klaus-Peter
Abstract / Bemerkung
BACKGROUND:So far very limited knowledge exists on L-arginine catabolism in cyanobacteria, although six major L-arginine-degrading pathways have been described for prokaryotes. Thus, we have performed a bioinformatic analysis of possible L-arginine-degrading pathways in cyanobacteria. Further, we chose Synechocystis sp. PCC 6803 for a more detailed bioinformatic analysis and for validation of the bioinformatic predictions on L-arginine catabolism with a transcript analysis.RESULTS:We have evaluated 24 cyanobacterial genomes of freshwater or marine strains for the presence of putative L-arginine-degrading enzymes. We identified an L-arginine decarboxylase pathway in all 24 strains. In addition, cyanobacteria have one or two further pathways representing either an arginase pathway or L-arginine deiminase pathway or an L-arginine oxidase/dehydrogenase pathway. An L-arginine amidinotransferase pathway as a major L-arginine-degrading pathway is not likely but can not be entirely excluded. A rather unusual finding was that the cyanobacterial L-arginine deiminases are substantially larger than the enzymes in non-photosynthetic bacteria and that they are membrane-bound. A more detailed bioinformatic analysis of Synechocystis sp. PCC 6803 revealed that three different L-arginine-degrading pathways may in principle be functional in this cyanobacterium. These are (i) an L-arginine decarboxylase pathway, (ii) an L-arginine deiminase pathway, and (iii) an L-arginine oxidase/dehydrogenase pathway. A transcript analysis of cells grown either with nitrate or L-arginine as sole N-source and with an illumination of 50 mumol photons m-2 s-1 showed that the transcripts for the first enzyme(s) of all three pathways were present, but that the transcript levels for the L-arginine deiminase and the L-arginine oxidase/dehydrogenase were substantially higher than that of the three isoenzymes of L-arginine decarboxylase.CONCLUSION:The evaluation of 24 cyanobacterial genomes revealed that five different L-arginine-degrading pathways are present in the investigated cyanobacterial species. In Synechocystis sp. PCC 6803 an L-arginine deiminase pathway and an L-arginine oxidase/dehydrogenase pathway represent the major pathways, while the L-arginine decarboxylase pathway most likely only functions in polyamine biosynthesis. The transcripts encoding the enzymes of the two major pathways were constitutively expressed with the exception of the transcript for the carbamate kinase, which was substantially up-regulated in cells grown with L-arginine.
Erscheinungsjahr
2007
Zeitschriftentitel
BMC Genomics
Band
8
Ausgabe
1
Art.-Nr.
437
ISSN
1471-2164
Page URI
https://pub.uni-bielefeld.de/record/2438963

Zitieren

Schriek S, Rückert C, Staiger D, Pistorius EK, Michel K-P. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics. 2007;8(1): 437.
Schriek, S., Rückert, C., Staiger, D., Pistorius, E. K., & Michel, K. - P. (2007). Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics, 8(1), 437. https://doi.org/10.1186/1471-2164-8-437
Schriek, Sarah, Rückert, Christian, Staiger, Dorothee, Pistorius, Elfriede K., and Michel, Klaus-Peter. 2007. “Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803”. BMC Genomics 8 (1): 437.
Schriek, S., Rückert, C., Staiger, D., Pistorius, E. K., and Michel, K. - P. (2007). Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics 8:437.
Schriek, S., et al., 2007. Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics, 8(1): 437.
S. Schriek, et al., “Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803”, BMC Genomics, vol. 8, 2007, : 437.
Schriek, S., Rückert, C., Staiger, D., Pistorius, E.K., Michel, K.-P.: Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803. BMC Genomics. 8, : 437 (2007).
Schriek, Sarah, Rückert, Christian, Staiger, Dorothee, Pistorius, Elfriede K., and Michel, Klaus-Peter. “Bioinformatic evaluation of L-arginine catabolic pathways in 24 cyanobacteria and transcriptional analysis of genes encoding enzymes of L-arginine catabolism in the cyanobacterium Synechocystis sp. PCC 6803”. BMC Genomics 8.1 (2007): 437.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:59Z
MD5 Prüfsumme
45f0482fee6b2b72c19dcd2aa67251e4


Link(s) zu Volltext(en)
Access Level
Restricted Closed Access

18 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Reduction of Spermidine Content Resulting from Inactivation of Two Arginine Decarboxylases Increases Biofilm Formation in Synechocystis sp. Strain PCC 6803.
Kera K, Nagayama T, Nanatani K, Saeki-Yamoto C, Tominaga A, Souma S, Miura N, Takeda K, Kayamori S, Ando E, Higashi K, Igarashi K, Uozumi N., J Bacteriol 200(9), 2018
PMID: 29440257
The cyanobacterial ornithine-ammonia cycle involves an arginine dihydrolase.
Zhang H, Liu Y, Nie X, Liu L, Hua Q, Zhao GP, Yang C., Nat Chem Biol 14(6), 2018
PMID: 29632414
Nitrogen goes around.
Yu J., Nat Chem Biol 14(6), 2018
PMID: 29769734
Microbial Ecology on Solar Panels in Berkeley, CA, United States.
Porcar M, Louie KB, Kosina SM, Van Goethem MW, Bowen BP, Tanner K, Northen TR., Front Microbiol 9(), 2018
PMID: 30619134
Raineyella antarctica gen. nov., sp. nov., a psychrotolerant, d-amino-acid-utilizing anaerobe isolated from two geographic locations of the Southern Hemisphere.
Pikuta EV, Menes RJ, Bruce AM, Lyu Z, Patel NB, Liu Y, Hoover RB, Busse HJ, Lawson PA, Whitman WB., Int J Syst Evol Microbiol 66(12), 2016
PMID: 27902285
Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?
Lu L, Wu Y, Zuo L, Luo X, Large PJ., World J Microbiol Biotechnol 30(3), 2014
PMID: 24105082
A data integration and visualization resource for the metabolic network of Synechocystis sp. PCC 6803.
Maarleveld TR, Boele J, Bruggeman FJ, Teusink B., Plant Physiol 164(3), 2014
PMID: 24402049
Intestinal microbiome and digoxin inactivation: meal plan for digoxin users?
Lu L, Wu Y, Zuo L, Luo X, Large PJ., World J Microbiol Biotechnol 30(3), 2014
PMID: IND500727634
Advances in detection methods of L-amino acid oxidase activity.
Yu Z, Wang Y, Zhou N, Zhao M, Qiu J, Lin J., Appl Biochem Biotechnol 174(1), 2014
PMID: 24903958
A new arsenate reductase involved in arsenic detoxification in Anabaena sp. PCC7120.
Pandey S, Shrivastava AK, Singh VK, Rai R, Singh PK, Rai S, Rai LC., Funct Integr Genomics 13(1), 2013
PMID: 23086594
Hydrogenosome-localization of arginine deiminase in Trichomonas vaginalis.
Morada M, Smid O, Hampl V, Sutak R, Lam B, Rappelli P, Dessì D, Fiori PL, Tachezy J, Yarlett N., Mol Biochem Parasitol 176(1), 2011
PMID: 21074581
Detection of an L-amino acid dehydrogenase activity in Synechocystis sp. PCC 6803.
Schriek S, Kahmann U, Staiger D, Pistorius EK, Michel KP., J Exp Bot 60(3), 2009
PMID: 19213808
Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp. PCC 6803.
Schriek S, Aguirre-von-Wobeser E, Nodop A, Becker A, Ibelings BW, Bok J, Staiger D, Matthijs HC, Pistorius EK, Michel KP., Physiol Plant 133(3), 2008
PMID: 18419737
Transcript profiling indicates that the absence of PsbO affects the coordination of C and N metabolism in Synechocystis sp. PCC 6803
Schriek S, Aguirre-von-Wobeser E, Nodop A, Becker A, Ibelings BW, Bok J, Staiger D, Matthijs HCP, Pistorius EK, Michel KP., Physiol Plant 133(3), 2008
PMID: IND44069758
Amino acid availability determines the ratio of microcystin variants in the cyanobacterium Planktothrix agardhii.
Tonk L, van de Waal DB, Slot P, Huisman J, Matthijs HC, Visser PM., FEMS Microbiol Ecol 65(3), 2008
PMID: 18616588

65 References

Daten bereitgestellt von Europe PubMed Central.

Formation of radioactive citrulline during photosynthetic 14CO2 fixation by blue-green algae
Linko P, Holm-Hansson O, Bassham JA, Calvin M., 1957
The biochemistry and molecular regulation of carbon dioxide metabolism in cyanobacteria
Tabita FR., 1994
Inclusion bodies in the cyanobacteria: Cyanophycin, polyphosphate, polyhedral bodies
Simon RD., 1987
Cyanobacterial cell inclusions.
Allen MM., Annu. Rev. Microbiol. 38(), 1984
PMID: 6437321
PII-regulated arginine synthesis controls accumulation of cyanophycin in Synechocystis sp. strain PCC 6803.
Maheswaran M, Ziegler K, Lockau W, Hagemann M, Forchhammer K., J. Bacteriol. 188(7), 2006
PMID: 16547064
Transient accumulations of cyanophycin in and 6803
Mackerras AH, de NM, Smith GD., 1990
Is cyanophycin involved in the integration of nitrogen and carbon metabolism in the cyanobacteria and Gloeothece grown on light/dark cycles?
Mackerras AH, Youens BN, Weir RC, Smith GD., 1990
Inclusions: Cyanophycin
Allen MM., 1988
Effect of nitrogen source on cyanophycin synthesis in Synechocystis sp. strain PCC 6308.
Kolodny NH, Bauer D, Bryce K, Klucevsek K, Lane A, Medeiros L, Mercer W, Moin S, Park D, Petersen J, Wright J, Yuen C, Wolfson AJ, Allen MM., J. Bacteriol. 188(3), 2006
PMID: 16428397
Biosynthesis and metabolism of arginine in bacteria.
Cunin R, Glansdorff N, Pierard A, Stalon V., Microbiol. Rev. 50(3), 1986
PMID: 3534538
Evolution of Arginine Metabolism
Stalon V., 1985
Arginine catabolism by microorganisms.
Abdelal AT., Annu. Rev. Microbiol. 33(), 1979
PMID: 386920
Enzymology of arginine metabolism in heterocyst-forming cyanobacteria
Gupta M, Carr NG., 1981
Arginine catabolism in Aphanocapsa 6308.
Weathers PJ, Chee HL, Allen MM., Arch. Microbiol. 118(1), 1978
PMID: 100070
Ornithine cycle in Nostoc PCC 73102. Arginase, OTC and arginine deiminase, and the effects of addition of external arginine, ornithine or citrulline
Martel A, Jansson E, Garcia- G, Lindblad P., 1993
Arginine catabolism in the cyanobacterium Synechocystis sp. Strain PCC 6803 involves the urea cycle and arginase pathway.
Quintero MJ, Muro-Pastor AM, Herrero A, Flores E., J. Bacteriol. 182(4), 2000
PMID: 10648527
Isolation and partial characterization of a L-amino acid oxidase and of photosystem II complexes from the cyanobacterium PCC 7942
Engels DH, Engels A, Pistorius EK., 1992
L-amino acid oxidases with specificity for basic L-amino acids in cyanobacteria.
Gau AE, Heindl A, Nodop A, Kahmann U, Pistorius EK., Z. Naturforsch., C, J. Biosci. 62(3-4), 2007
PMID: 17542496
Some properties of a basic L-amino-acid oxidase from Anacystis nidulans.
Pistorius EK, Voss H., Biochim. Biophys. Acta 611(2), 1980
PMID: 6766743
A novel putrescine utilization pathway involves gamma-glutamylated intermediates of Escherichia coli K-12.
Kurihara S, Oda S, Kato K, Kim HG, Koyanagi T, Kumagai H, Suzuki H., J. Biol. Chem. 280(6), 2004
PMID: 15590624
Multiple evolutionary origin of pyridoxal-5'-phosphate-dependent amino acid decarboxylases.
Sandmeier E, Hale TI, Christen P., Eur. J. Biochem. 221(3), 1994
PMID: 8181483
Polyamines in microorganisms.
Tabor CW, Tabor H., Microbiol. Rev. 49(1), 1985
PMID: 3157043
Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine.
Chen H, McCaig BC, Melotto M, He SY, Howe GA., J. Biol. Chem. 279(44), 2004
PMID: 15322128
Cloning and expression of a prokaryotic enzyme, arginine deiminase, from a primitive eukaryote Giardia intestinalis.
Knodler LA, Sekyere EO, Stewart TS, Schofield PJ, Edwards MR., J. Biol. Chem. 273(8), 1998
PMID: 9468500
The pathway of arginine catabolism in the parasitic flagellate Trichomonas vaginalis.
Linstead D, Cranshaw MA., Mol. Biochem. Parasitol. 8(3), 1983
PMID: 6312311
Subcellular localization of the enzymes of the arginine dihydrolase pathway in Trichomonas vaginalis and Tritrichomonas foetus.
Yarlett N, Lindmark DG, Goldberg B, Moharrami MA, Bacchi CJ., J. Eukaryot. Microbiol. 41(6), 1994
PMID: 7866382
[Induction and specificity of enzymes of the new catabolic arginine pathway].
Nguyen Van Thoai , Thome-Beau F, Olomucki A., Biochim. Biophys. Acta 115(1), 1966
PMID: 5936244
Phylogeny of related functions: the case of polyamine biosynthetic enzymes.
Sekowska A, Danchin A, Risler JL., Microbiology (Reading, Engl.) 146 ( Pt 8)(), 2000
PMID: 10931887
A novel superfamily of enzymes that catalyze the modification of guanidino groups.
Shirai H, Blundell TL, Mizuguchi K., Trends Biochem. Sci. 26(8), 2001
PMID: 11504612
Roles of conserved residues in the arginase family.
Perozich J, Hempel J, Morris SM Jr., Biochim. Biophys. Acta 1382(1), 1998
PMID: 9507056
Crystal structures of arginine deiminase with covalent reaction intermediates; implications for catalytic mechanism.
Das K, Butler GH, Kwiatkowski V, Clark AD Jr, Yadav P, Arnold E., Structure 12(4), 2004
PMID: 15062088
Polymorphism in genes for the enzyme arginine deiminase among Mycoplasma species.
Sugimura K, Ohno T, Azuma I, Yamamoto K., Infect. Immun. 61(1), 1993
PMID: 8093359
The amino acid sequences of human and pig L-arginine:glycine amidinotransferase.
Humm A, Huber R, Mann K., FEBS Lett. 339(1-2), 1994
PMID: 8313955
The comparative amino acid sequences, substrate specificities and gene or cDNA nucleotide sequences of some prokaryote and eukaryote amidinotransferases: implications for evolution.
Bedekar A, Zink RM, Sherman DH, Line TV, Van Pilsum JF., Comp. Biochem. Physiol. B, Biochem. Mol. Biol. 119(4), 1998
PMID: 9787760
Sequence analysis and expression of the arginine-deiminase and carbamate-kinase genes of Pseudomonas aeruginosa.
Baur H, Luethi E, Stalon V, Mercenier A, Haas D., Eur. J. Biochem. 179(1), 1989
PMID: 2537202
Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method.
Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A., Protein Eng. 10(6), 1997
PMID: 9278280
TMbase - A database of membrane-spanning protein segments
Hofmann K, Stoffel W., 1993
Polyamines of Anacystis nidulans and metabolism of exogenous spermidine and spermine.
Ramakrishna S, Guarino L, Cohen SS., J. Bacteriol. 134(3), 1978
PMID: 96100
The aerobic respiratory chain of
Anraku Y, Gennis RB., 1987
Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ., Nucleic Acids Res. 25(17), 1997
PMID: 9254694
The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG., Nucleic Acids Res. 25(24), 1997
PMID: 9396791

Maciukenas M., 0
Web Services at the European Bioinformatics Institute
Labarga A, Valentin F, Andersson M, Lopez R., 2007
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 18045455
PubMed | Europe PMC

Suchen in

Google Scholar