A systematic method for configuring VLSI networks of spiking neurons
Neftci E, Chicca E, Indiveri G, Douglas RJ (2011)
Neural Computation 23(10): 2457-2497.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Autor*in
Neftci, E.;
Chicca, ElisabettaUniBi ;
Indiveri, G.;
Douglas, R. J.
Einrichtung
Abstract / Bemerkung
An increasing number of research groups are developing custom hybrid analog/digital very large scale integration (VLSI) chips and systems that implement hundreds to thousands of spiking neurons with biophysically realistic dynamics, with the intention of emulating brainlike real-world behavior in hardware and robotic systems rather than simply simulating their performance on general-purpose digital computers. Although the electronic engineering aspects of these emulation systems is proceeding well, progress toward the actual emulation of brainlike tasks is restricted by the lack of suitable high-level configuration methods of the kind that have already been developed over many decades for simulations on general-purpose computers. The key difficulty is that the dynamics of the CMOS electronic analogs are determined by transistor biases that do not map simply to the parameter types and values used in typical abstract mathematical models of neurons and their networks. Here we provide a general method for resolving this difficulty. We describe a parameter mapping technique that permits an automatic configuration of VLSI neural networks so that their electronic emulation conforms to a higher-level neuronal simulation. We show that the neurons configured by our method exhibit spike timing statistics and temporal dynamics that are the same as those observed in the software simulated neurons and, in particular, that the key parameters of recurrent VLSI neural networks (e. g., implementing soft winner-take-all) can be precisely tuned. The proposed method permits a seamless integration between software simulations with hardware emulations and intertranslatability between the parameters of abstract neuronal models and their emulation counterparts. Most important, our method offers a route toward a high-level task configuration language for neuromorphic VLSI systems.
Erscheinungsjahr
2011
Zeitschriftentitel
Neural Computation
Band
23
Ausgabe
10
Seite(n)
2457-2497
ISSN
0899-7667
eISSN
1530-888X
Page URI
https://pub.uni-bielefeld.de/record/2426566
Zitieren
Neftci E, Chicca E, Indiveri G, Douglas RJ. A systematic method for configuring VLSI networks of spiking neurons. Neural Computation. 2011;23(10):2457-2497.
Neftci, E., Chicca, E., Indiveri, G., & Douglas, R. J. (2011). A systematic method for configuring VLSI networks of spiking neurons. Neural Computation, 23(10), 2457-2497. https://doi.org/10.1162/NECO_a_00182
Neftci, E., Chicca, Elisabetta, Indiveri, G., and Douglas, R. J. 2011. “A systematic method for configuring VLSI networks of spiking neurons”. Neural Computation 23 (10): 2457-2497.
Neftci, E., Chicca, E., Indiveri, G., and Douglas, R. J. (2011). A systematic method for configuring VLSI networks of spiking neurons. Neural Computation 23, 2457-2497.
Neftci, E., et al., 2011. A systematic method for configuring VLSI networks of spiking neurons. Neural Computation, 23(10), p 2457-2497.
E. Neftci, et al., “A systematic method for configuring VLSI networks of spiking neurons”, Neural Computation, vol. 23, 2011, pp. 2457-2497.
Neftci, E., Chicca, E., Indiveri, G., Douglas, R.J.: A systematic method for configuring VLSI networks of spiking neurons. Neural Computation. 23, 2457-2497 (2011).
Neftci, E., Chicca, Elisabetta, Indiveri, G., and Douglas, R. J. “A systematic method for configuring VLSI networks of spiking neurons”. Neural Computation 23.10 (2011): 2457-2497.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Volltext(e)
Access Level
Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:58Z
MD5 Prüfsumme
69e833c1db4fbdae97854a3f14b9023b
Name
Neftci_etal11.pdf
1.25 MB
Access Level
Closed Access
Zuletzt Hochgeladen
2019-09-06T08:57:58Z
MD5 Prüfsumme
8b7e4fc776c6021f84de15cb1b698c01
Daten bereitgestellt von European Bioinformatics Institute (EBI)
20 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Feedforward Approximations to Dynamic Recurrent Network Architectures.
Muir DR., Neural Comput 30(2), 2018
PMID: 29162003
Muir DR., Neural Comput 30(2), 2018
PMID: 29162003
Solving Constraint-Satisfaction Problems with Distributed Neocortical-Like Neuronal Networks.
Rutishauser U, Slotine JJ, Douglas RJ., Neural Comput 30(5), 2018
PMID: 29566357
Rutishauser U, Slotine JJ, Douglas RJ., Neural Comput 30(5), 2018
PMID: 29566357
ASIC Implementation of a Nonlinear Dynamical Model for Hippocampal Prosthesis.
Qiao Z, Han Y, Han X, Xu H, Li WXY, Song D, Berger TW, Cheung RCC., Neural Comput 30(9), 2018
PMID: 29949460
Qiao Z, Han Y, Han X, Xu H, Li WXY, Song D, Berger TW, Cheung RCC., Neural Comput 30(9), 2018
PMID: 29949460
Data and Power Efficient Intelligence with Neuromorphic Learning Machines.
Neftci EO., iScience 5(), 2018
PMID: 30240646
Neftci EO., iScience 5(), 2018
PMID: 30240646
Hodgkin-Huxley Neuron and FPAA Dynamics.
Natarajan A, Hasler J., IEEE Trans Biomed Circuits Syst 12(4), 2018
PMID: 30010587
Natarajan A, Hasler J., IEEE Trans Biomed Circuits Syst 12(4), 2018
PMID: 30010587
Organizing Sequential Memory in a Neuromorphic Device Using Dynamic Neural Fields.
Kreiser R, Aathmani D, Qiao N, Indiveri G, Sandamirskaya Y., Front Neurosci 12(), 2018
PMID: 30524218
Kreiser R, Aathmani D, Qiao N, Indiveri G, Sandamirskaya Y., Front Neurosci 12(), 2018
PMID: 30524218
Obstacle Avoidance and Target Acquisition for Robot Navigation Using a Mixed Signal Analog/Digital Neuromorphic Processing System.
Milde MB, Blum H, Dietmüller A, Sumislawska D, Conradt J, Indiveri G, Sandamirskaya Y., Front Neurorobot 11(), 2017
PMID: 28747883
Milde MB, Blum H, Dietmüller A, Sumislawska D, Conradt J, Indiveri G, Sandamirskaya Y., Front Neurorobot 11(), 2017
PMID: 28747883
Neuromorphic neural interfaces: from neurophysiological inspiration to biohybrid coupling with nervous systems.
Broccard FD, Joshi S, Wang J, Cauwenberghs G., J Neural Eng 14(4), 2017
PMID: 28573983
Broccard FD, Joshi S, Wang J, Cauwenberghs G., J Neural Eng 14(4), 2017
PMID: 28573983
Specific excitatory connectivity for feature integration in mouse primary visual cortex.
Muir DR, Molina-Luna P, Roth MM, Helmchen F, Kampa BM., PLoS Comput Biol 13(12), 2017
PMID: 29240769
Muir DR, Molina-Luna P, Roth MM, Helmchen F, Kampa BM., PLoS Comput Biol 13(12), 2017
PMID: 29240769
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
Stromatias E, Neil D, Pfeiffer M, Galluppi F, Furber SB, Liu SC., Front Neurosci 9(), 2015
PMID: 26217169
Stromatias E, Neil D, Pfeiffer M, Galluppi F, Furber SB, Liu SC., Front Neurosci 9(), 2015
PMID: 26217169
PyNCS: a microkernel for high-level definition and configuration of neuromorphic electronic systems.
Stefanini F, Neftci EO, Sheik S, Indiveri G., Front Neuroinform 8(), 2014
PMID: 25232314
Stefanini F, Neftci EO, Sheik S, Indiveri G., Front Neuroinform 8(), 2014
PMID: 25232314
A learning-enabled neuron array IC based upon transistor channel models of biological phenomena.
Brink S, Nease S, Hasler P, Ramakrishnan S, Wunderlich R, Basu A, Degnan B., IEEE Trans Biomed Circuits Syst 7(1), 2013
PMID: 23853281
Brink S, Nease S, Hasler P, Ramakrishnan S, Wunderlich R, Basu A, Degnan B., IEEE Trans Biomed Circuits Syst 7(1), 2013
PMID: 23853281
Six networks on a universal neuromorphic computing substrate.
Pfeil T, Grübl A, Jeltsch S, Müller E, Müller P, Petrovici MA, Schmuker M, Brüderle D, Schemmel J, Meier K., Front Neurosci 7(), 2013
PMID: 23423583
Pfeil T, Grübl A, Jeltsch S, Müller E, Müller P, Petrovici MA, Schmuker M, Brüderle D, Schemmel J, Meier K., Front Neurosci 7(), 2013
PMID: 23423583
Synthesizing cognition in neuromorphic electronic systems.
Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ., Proc Natl Acad Sci U S A 110(37), 2013
PMID: 23878215
Neftci E, Binas J, Rutishauser U, Chicca E, Indiveri G, Douglas RJ., Proc Natl Acad Sci U S A 110(37), 2013
PMID: 23878215
Emergent Auditory Feature Tuning in a Real-Time Neuromorphic VLSI System.
Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E., Front Neurosci 6(), 2012
PMID: 22347163
Sheik S, Coath M, Indiveri G, Denham SL, Wennekers T, Chicca E., Front Neurosci 6(), 2012
PMID: 22347163
VLSI circuits implementing computational models of neocortical circuits.
Wijekoon JH, Dudek P., J Neurosci Methods 210(1), 2012
PMID: 22342970
Wijekoon JH, Dudek P., J Neurosci Methods 210(1), 2012
PMID: 22342970
Dynamic state and parameter estimation applied to neuromorphic systems.
Neftci EO, Toth B, Indiveri G, Abarbanel HD., Neural Comput 24(7), 2012
PMID: 22428591
Neftci EO, Toth B, Indiveri G, Abarbanel HD., Neural Comput 24(7), 2012
PMID: 22428591
Parameter estimation of a spiking silicon neuron.
Russell A, Mazurek K, Mihalaş S, Niebur E, Etienne-Cummings R., IEEE Trans Biomed Circuits Syst 6(2), 2012
PMID: 23852978
Russell A, Mazurek K, Mihalaş S, Niebur E, Etienne-Cummings R., IEEE Trans Biomed Circuits Syst 6(2), 2012
PMID: 23852978
Robust Working Memory in an Asynchronously Spiking Neural Network Realized with Neuromorphic VLSI.
Giulioni M, Camilleri P, Mattia M, Dante V, Braun J, Del Giudice P., Front Neurosci 5(), 2011
PMID: 22347151
Giulioni M, Camilleri P, Mattia M, Dante V, Braun J, Del Giudice P., Front Neurosci 5(), 2011
PMID: 22347151
Tunable neuromimetic integrated system for emulating cortical neuron models.
Grassia F, Buhry L, Lévi T, Tomas J, Destexhe A, Saïghi S., Front Neurosci 5(), 2011
PMID: 22163213
Grassia F, Buhry L, Lévi T, Tomas J, Destexhe A, Saïghi S., Front Neurosci 5(), 2011
PMID: 22163213
80 References
Daten bereitgestellt von Europe PubMed Central.
AUTHOR UNKNOWN, 0
Estimates of the net excitatory currents evoked by visual stimulation of identified neurons in cat visual cortex.
Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D., Cereb. Cortex 8(5), 1998
PMID: 9722089
Ahmed B, Anderson JC, Douglas RJ, Martin KA, Whitteridge D., Cereb. Cortex 8(5), 1998
PMID: 9722089
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Synchrony in silicon: the gamma rhythm.
Arthur JV, Boahen KA., IEEE Trans Neural Netw 18(6), 2007
PMID: 18051195
Arthur JV, Boahen KA., IEEE Trans Neural Netw 18(6), 2007
PMID: 18051195
AUTHOR UNKNOWN, 0
Synaptic dynamics in analog VLSI.
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003
Bartolozzi C, Indiveri G., Neural Comput 19(10), 2007
PMID: 17716003
AUTHOR UNKNOWN, 0
Theory of orientation tuning in visual cortex.
Ben-Yishai R, Bar-Or RL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 92(9), 1995
PMID: 7731993
Ben-Yishai R, Bar-Or RL, Sompolinsky H., Proc. Natl. Acad. Sci. U.S.A. 92(9), 1995
PMID: 7731993
AUTHOR UNKNOWN, 0
Maximum likelihood analysis of spike trains of interacting nerve cells.
Brillinger DR., Biol Cybern 59(3), 1988
PMID: 3179344
Brillinger DR., Biol Cybern 59(3), 1988
PMID: 3179344
Brüderle, 2009
Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons.
Brunel N., J Comput Neurosci 8(3), 2000
PMID: 10809012
Brunel N., J Comput Neurosci 8(3), 2000
PMID: 10809012
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
PyNN: A Common Interface for Neuronal Network Simulators.
Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P., Front Neuroinform 2(), 2008
PMID: 19194529
Davison AP, Bruderle D, Eppler J, Kremkow J, Muller E, Pecevski D, Perrinet L, Yger P., Front Neuroinform 2(), 2008
PMID: 19194529
Dayan, 2001
Destexhe, 1998
Douglas, 1995
Douglas, 1994
Neuronal circuits of the neocortex.
Douglas RJ, Martin KA., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217339
Douglas RJ, Martin KA., Annu. Rev. Neurosci. 27(), 2004
PMID: 15217339
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Dynamics of the firing probability of noisy integrate-and-fire neurons.
Fourcaud N, Brunel N., Neural Comput 14(9), 2002
PMID: 12184844
Fourcaud N, Brunel N., Neural Comput 14(9), 2002
PMID: 12184844
Collective behavior of networks with linear (VLSI) integrate-and-fire neurons.
Fusi S, Mattia M., Neural Comput 11(3), 1999
PMID: 10085424
Fusi S, Mattia M., Neural Comput 11(3), 1999
PMID: 10085424
Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit.
Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS., Nature 405(6789), 2000
PMID: 10879535
Hahnloser RH, Sarpeshkar R, Mahowald MA, Douglas RJ, Seung HS., Nature 405(6789), 2000
PMID: 10879535
Permitted and forbidden sets in symmetric threshold-linear networks.
Hahnloser RH, Seung HS, Slotine JJ., Neural Comput 15(3), 2003
PMID: 12620160
Hahnloser RH, Seung HS, Slotine JJ., Neural Comput 15(3), 2003
PMID: 12620160
Hansel, 1998
Efficient estimation of detailed single-neuron models.
Huys QJ, Ahrens MB, Paninski L., J. Neurophysiol. 96(2), 2006
PMID: 16624998
Huys QJ, Ahrens MB, Paninski L., J. Neurophysiol. 96(2), 2006
PMID: 16624998
Space-rate coding in an adaptive silicon neuron.
Hynna K, Boahen K., Neural Netw 14(6-7), 2001
PMID: 11665760
Hynna K, Boahen K., Neural Netw 14(6-7), 2001
PMID: 11665760
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity.
Indiveri G, Chicca E, Douglas R., IEEE Trans Neural Netw 17(1), 2006
PMID: 16526488
Indiveri G, Chicca E, Douglas R., IEEE Trans Neural Netw 17(1), 2006
PMID: 16526488
Predicting every spike: a model for the responses of visual neurons.
Keat J, Reinagel P, Reid RC, Meister M., Neuron 30(3), 2001
PMID: 11430813
Keat J, Reinagel P, Reid RC, Meister M., Neuron 30(3), 2001
PMID: 11430813
Silicon auditory processors as computer peripherals.
Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D., IEEE Trans Neural Netw 4(3), 1993
PMID: 18267754
Lazzaro J, Wawrzynek J, Mahowald M, Sivilotti M, Gillespie D., IEEE Trans Neural Netw 4(3), 1993
PMID: 18267754
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Real-time computing without stable states: a new framework for neural computation based on perturbations.
Maass W, Natschlager T, Markram H., Neural Comput 14(11), 2002
PMID: 12433288
Maass W, Natschlager T, Markram H., Neural Comput 14(11), 2002
PMID: 12433288
Mahowald, 1989
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Neftci, 2008
Neftci, 2010
Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity.
Okatan M, Wilson MA, Brown EN., Neural Comput 17(9), 2005
PMID: 15992486
Okatan M, Wilson MA, Brown EN., Neural Comput 17(9), 2005
PMID: 15992486
Maximum likelihood estimation of a stochastic integrate-and-fire neural encoding model.
Paninski L, Pillow JW, Simoncelli EP., Neural Comput 16(12), 2004
PMID: 15516273
Paninski L, Pillow JW, Simoncelli EP., Neural Comput 16(12), 2004
PMID: 15516273
AUTHOR UNKNOWN, 0
Pecevski, Frontiers Neuroinf. 3(), 2008
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Orchard, 2007
State-dependent computation using coupled recurrent networks.
Rutishauser U, Douglas RJ., Neural Comput 21(2), 2009
PMID: 19431267
Rutishauser U, Douglas RJ., Neural Comput 21(2), 2009
PMID: 19431267
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Schwartz, 1993
CAVIAR: a 45k neuron, 5M synapse, 12G connects/s AER hardware sensory-processing- learning-actuating system for high-speed visual object recognition and tracking.
Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas-Perez M, Delbruck T, Liu SC, Douglas R, Hafliger P, Jimenez-Moreno G, Civit Ballcels A, Serrano-Gotarredona T, Acosta-Jimenez AJ, Linares-Barranco B., IEEE Trans Neural Netw 20(9), 2009
PMID: 19635693
Serrano-Gotarredona R, Oster M, Lichtsteiner P, Linares-Barranco A, Paz-Vicente R, Gomez-Rodriguez F, Camunas-Mesa L, Berner R, Rivas-Perez M, Delbruck T, Liu SC, Douglas R, Hafliger P, Jimenez-Moreno G, Civit Ballcels A, Serrano-Gotarredona T, Acosta-Jimenez AJ, Linares-Barranco B., IEEE Trans Neural Netw 20(9), 2009
PMID: 19635693
Rate models for conductance-based cortical neuronal networks.
Shriki O, Hansel D, Sompolinsky H., Neural Comput 15(8), 2003
PMID: 14511514
Shriki O, Hansel D, Sompolinsky H., Neural Comput 15(8), 2003
PMID: 14511514
Neurotech for neuroscience: unifying concepts, organizing principles, and emerging tools.
Silver R, Boahen K, Grillner S, Kopell N, Olsen KL., J. Neurosci. 27(44), 2007
PMID: 17978017
Silver R, Boahen K, Grillner S, Kopell N, Olsen KL., J. Neurosci. 27(44), 2007
PMID: 17978017
A multiconductance silicon neuron with biologically matched dynamics.
Simoni MF, Cymbalyuk GS, Sorensen ME, Calabrese RL, DeWeerth SP., IEEE Trans Biomed Eng 51(2), 2004
PMID: 14765707
Simoni MF, Cymbalyuk GS, Sorensen ME, Calabrese RL, DeWeerth SP., IEEE Trans Biomed Eng 51(2), 2004
PMID: 14765707
Belief propagation in networks of spiking neurons.
Steimer A, Maass W, Douglas R., Neural Comput 21(9), 2009
PMID: 19548806
Steimer A, Maass W, Douglas R., Neural Comput 21(9), 2009
PMID: 19548806
Tsividis, 1998
AUTHOR UNKNOWN, 0
Building blocks for electronic spiking neural networks.
van Schaik A., Neural Netw 14(6-7), 2001
PMID: 11665758
van Schaik A., Neural Netw 14(6-7), 2001
PMID: 11665758
AUTHOR UNKNOWN, 0
Compact silicon neuron circuit with spiking and bursting behaviour.
Wijekoon JH, Dudek P., Neural Netw 21(2-3), 2007
PMID: 18262751
Wijekoon JH, Dudek P., Neural Netw 21(2-3), 2007
PMID: 18262751
AUTHOR UNKNOWN, 0
AUTHOR UNKNOWN, 0
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 21732859
PubMed | Europe PMC
Suchen in