Seebeck effect in magnetic tunnel junctions

Walter M, Walowski J, Zbarsky V, Münzenberg M, Schäfers M, Ebke D, Reiss G, Thomas A, Peretzki P, Seibt M, Moodera JS, et al. (2011)
NATURE MATERIALS 10(10): 742-746.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ; ; ; ; ; ; ; ; ;
Alle
Abstract / Bemerkung
Creating temperature gradients in magnetic nanostructures has resulted in a new research direction, that is, the combination of magneto- and thermoelectric effects(1-5). Here, we demonstrate the observation of one important effect of this class: the magneto-Seebeck effect. It is observed when a magnetic configuration changes the charge-based Seebeck coefficient. In particular, the Seebeck coefficient changes during the transition from a parallel to an antiparallel magnetic configuration in a tunnel junction. In this respect, it is the analogue to the tunnelling magnetoresistance. The Seebeck coefficients in parallel and antiparallel configurations are of the order of the voltages known from the charge-Seebeck effect. The size and sign of the effect can be controlled by the composition of the electrodes' atomic layers adjacent to the barrier and the temperature. The geometric centre of the electronic density of states relative to the Fermi level determines the size of the Seebeck effect. Experimentally, we realized 8.8% magneto-Seebeck effect, which results from a voltage change of about -8.7 mu VK(-1) from the antiparallel to the parallel direction close to the predicted value of -12.1 mu VK(-1). In contrast to the spin-Seebeck effect, it can be measured as a voltage change directly without conversion of a spin current.
Erscheinungsjahr
Zeitschriftentitel
NATURE MATERIALS
Band
10
Ausgabe
10
Seite(n)
742-746
ISSN
eISSN
PUB-ID

Zitieren

Walter M, Walowski J, Zbarsky V, et al. Seebeck effect in magnetic tunnel junctions. NATURE MATERIALS. 2011;10(10):742-746.
Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., et al. (2011). Seebeck effect in magnetic tunnel junctions. NATURE MATERIALS, 10(10), 742-746. doi:10.1038/NMAT3076
Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., et al. (2011). Seebeck effect in magnetic tunnel junctions. NATURE MATERIALS 10, 742-746.
Walter, M., et al., 2011. Seebeck effect in magnetic tunnel junctions. NATURE MATERIALS, 10(10), p 742-746.
M. Walter, et al., “Seebeck effect in magnetic tunnel junctions”, NATURE MATERIALS, vol. 10, 2011, pp. 742-746.
Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., Moodera, J.S., Czerner, M., Bachmann, M., Heiliger, C.: Seebeck effect in magnetic tunnel junctions. NATURE MATERIALS. 10, 742-746 (2011).
Walter, Marvin, Walowski, Jakob, Zbarsky, Vladyslav, Münzenberg, Markus, Schäfers, Markus, Ebke, Daniel, Reiss, Günter, Thomas, Andy, Peretzki, Patrick, Seibt, Michael, Moodera, Jagadeesh S., Czerner, Michael, Bachmann, Michael, and Heiliger, Christian. “Seebeck effect in magnetic tunnel junctions”. NATURE MATERIALS 10.10 (2011): 742-746.

30 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Making flexible spin caloritronic devices with interconnected nanowire networks.
da Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L., Sci Adv 5(3), 2019
PMID: 30838330
Thermal gradients for the stabilization of a single domain wall in magnetic nanowires.
Mejía-López J, Velásquez EA, Mazo-Zuluaga J, Altbir D., Nanotechnology 29(34), 2018
PMID: 29846183
Quantitative separation of the anisotropic magnetothermopower and planar Nernst effect by the rotation of an in-plane thermal gradient.
Reimer O, Meier D, Bovender M, Helmich L, Dreessen JO, Krieft J, Shestakov AS, Back CH, Schmalhorst JM, Hütten A, Reiss G, Kuschel T., Sci Rep 7(), 2017
PMID: 28094279
Large magneto-Seebeck effect in magnetic tunnel junctions with half-metallic Heusler electrodes.
Boehnke A, Martens U, Sterwerf C, Niesen A, Huebner T, von der Ehe M, Meinert M, Kuschel T, Thomas A, Heiliger C, Münzenberg M, Reiss G., Nat Commun 8(1), 2017
PMID: 29158514
Thermo-voltage measurements of atomic contacts at low temperature.
Ofarim A, Kopp B, Möller T, Martin L, Boneberg J, Leiderer P, Scheer E., Beilstein J Nanotechnol 7(), 2016
PMID: 27335765
Spectacular enhancement of thermoelectric phenomena in chemically synthesized graphene nanoribbons with substitution atoms.
Zberecki K, Swirkowicz R, Wierzbicki M, Barnaś J., Phys Chem Chem Phys 18(27), 2016
PMID: 27331357
Analysis of self-heating of thermally assisted spin-transfer torque magnetic random access memory.
Deschenes A, Muneer S, Akbulut M, Gokirmak A, Silva H., Beilstein J Nanotechnol 7(), 2016
PMID: 28144517
Spin effects in thermoelectric phenomena in SiC nanoribbons.
Zberecki K, Swirkowicz R, Wierzbicki M, Barnaś J., Phys Chem Chem Phys 17(3), 2015
PMID: 25473937
On/off switching of bit readout in bias-enhanced tunnel magneto-Seebeck effect.
Boehnke A, Milnikel M, von der Ehe M, Franz C, Zbarsky V, Czerner M, Rott K, Thomas A, Heiliger C, Reiss G, Münzenberg M., Sci Rep 5(), 2015
PMID: 25755010
Giant thermal spin-torque-assisted magnetic tunnel junction switching.
Pushp A, Phung T, Rettner C, Hughes BP, Yang SH, Parkin SS., Proc Natl Acad Sci U S A 112(21), 2015
PMID: 25971730
Boron nitride zigzag nanoribbons: optimal thermoelectric systems.
Zberecki K, Swirkowicz R, Barnaś J., Phys Chem Chem Phys 17(34), 2015
PMID: 26250512
A scenario for magnonic spin-wave traps.
Busse F, Mansurova M, Lenk B, von der Ehe M, Münzenberg M., Sci Rep 5(), 2015
PMID: 26279466
Spin Seebeck effect and spin Hall magnetoresistance at high temperatures for a Pt/yttrium iron garnet hybrid structure.
Wang S, Zou L, Zhang X, Cai J, Wang S, Shen B, Sun J., Nanoscale 7(42), 2015
PMID: 26455519
The first decade of organic spintronics research.
Sun D, Ehrenfreund E, Vardeny ZV., Chem Commun (Camb) 50(15), 2014
PMID: 24432354
Voltage tuning of thermal spin current in ferromagnetic tunnel contacts to semiconductors.
Jeon KR, Min BC, Spiesser A, Saito H, Shin SC, Yuasa S, Jansen R., Nat Mater 13(4), 2014
PMID: 24487495
Enhanced thermoelectric efficiency in ferromagnetic silicene nanoribbons terminated with hydrogen atoms.
Zberecki K, Swirkowicz R, Wierzbicki M, Barnaś J., Phys Chem Chem Phys 16(25), 2014
PMID: 24848750
Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation.
Schellekens AJ, Kuiper KC, de Wit RR, Koopmans B., Nat Commun 5(), 2014
PMID: 25007881
Thermoelectric Seebeck effect in oxide-based resistive switching memory.
Wang M, Bi C, Li L, Long S, Liu Q, Lv H, Lu N, Sun P, Liu M., Nat Commun 5(), 2014
PMID: 25141267
Spin-dependent thermoelectric effects in graphene-based spin valves.
Zeng M, Huang W, Liang G., Nanoscale 5(1), 2013
PMID: 23151965
Terahertz spin current pulses controlled by magnetic heterostructures.
Kampfrath T, Battiato M, Maldonado P, Eilers G, Nötzold J, Mährlein S, Zbarsky V, Freimuth F, Mokrousov Y, Blügel S, Wolf M, Radu I, Oppeneer PM, Münzenberg M., Nat Nanotechnol 8(4), 2013
PMID: 23542903
Time-resolved measurement of the tunnel magneto-Seebeck effect in a single magnetic tunnel junction.
Boehnke A, Walter M, Roschewsky N, Eggebrecht T, Drewello V, Rott K, Münzenberg M, Thomas A, Reiss G., Rev Sci Instrum 84(6), 2013
PMID: 23822355
Magnon-drag thermopile.
Costache MV, Bridoux G, Neumann I, Valenzuela SO., Nat Mater 11(3), 2012
PMID: 22179396
Direct observation of the spin-dependent Peltier effect.
Flipse J, Bakker FL, Slachter A, Dejene FK, van Wees BJ., Nat Nanotechnol 7(3), 2012
PMID: 22306839
Giant spin-dependent thermoelectric effect in magnetic tunnel junctions.
Lin W, Hehn M, Chaput L, Negulescu B, Andrieu S, Montaigne F, Mangin S., Nat Commun 3(), 2012
PMID: 22434187
Spin caloritronics.
Bauer GE, Saitoh E, van Wees BJ., Nat Mater 11(5), 2012
PMID: 22522639

17 References

Daten bereitgestellt von Europe PubMed Central.


Gravier, Phys. Rev. B 73(), 2006
Observation of the spin Seebeck effect.
Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E., Nature 455(7214), 2008
PMID: 18843364

Slachter, Nature Phys. 6(), 2010
Spin Seebeck insulator.
Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer GE, Maekawa S, Saitoh E., Nat Mater 9(11), 2010
PMID: 20871606
Observation of the spin-Seebeck effect in a ferromagnetic semiconductor.
Jaworski CM, Yang J, Mack S, Awschalom DD, Heremans JP, Myers RC., Nat Mater 9(11), 2010
PMID: 20871608

Czerner, Phys. Rev. B 83(), 2011

Bauer, Solid State Commun. 150(), 2010
Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system.
Johnson M, Silsbee RH., Phys. Rev., B Condens. Matter 35(10), 1987
PMID: 9940677
Spin polarization in half-metals probed by femtosecond spin excitation.
Muller GM, Walowski J, Djordjevic M, Miao GX, Gupta A, Ramos AV, Gehrke K, Moshnyaga V, Samwer K, Schmalhorst J, Thomas A, Hutten A, Reiss G, Moodera JS, Munzenberg M., Nat Mater 8(1), 2008
PMID: 19079243

Ikeda, Appl. Phys. Lett. 93(), 2008

Heiliger, J. Appl. Phys. 103(), 2008

Ouyang, Appl. Phys. Lett. 94(), 2009
Thermal conductivity of sputtered oxide films.
Lee S, Cahill DG, Allen TH., Phys. Rev., B Condens. Matter 52(1), 1995
PMID: 9979598

Thomas, Appl. Phys. Lett. 93(), 2008

AUTHOR UNKNOWN, 0
Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling.
Le Breton JC, Sharma S, Saito H, Yuasa S, Jansen R., Nature 475(7354), 2011
PMID: 21716285

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21785418
PubMed | Europe PMC

arXiv: 1104.1765

Suchen in

Google Scholar