A novel approach for mining polymorphic microsatellite markers in silico

Hoffman J, Nichols HJ (2011)
PLoS ONE 6(8): e23283: e23283.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
OA
Autor*in
Hoffman, JosephUniBi ; Nichols, H. J.
Abstract / Bemerkung
Abstract: An important emerging application of high-throughput 454 sequencing is the isolation of molecular markers such as microsatellites from genomic DNA. However, few studies have developed microsatellites from cDNA despite the added potential for targeting candidate genes. Moreover, to develop microsatellites usually requires the evaluation of numerous primer pairs for polymorphism in the focal species. This can be time-consuming and wasteful, particularly for taxa with low genetic diversity where the majority of primers often yield monomorphic polymerase chain reaction (PCR) products. Transcriptome assemblies provide a convenient solution, functional annotation of transcripts allowing markers to be targeted towards candidate genes, while high sequence coverage in principle permits the assessment of variability in silico. Consequently, we evaluated fifty primer pairs designed to amplify microsatellites, primarily residing within transcripts related to immunity and growth, identified from an Antarctic fur seal (Arctocephalus gazella) transcriptome assembly. In silico visualization was used to classify each microsatellite as being either polymorphic or monomorphic and to quantify the number of distinct length variants, each taken to represent a different allele. The majority of loci (n = 36, 76.0%) yielded interpretable PCR products, 23 of which were polymorphic in a sample of 24 fur seal individuals. Loci that appeared variable in silico were significantly more likely to yield polymorphic PCR products, even after controlling for microsatellite length measured in silico. We also found a significant positive relationship between inferred and observed allele number. This study not only demonstrates the feasibility of generating modest panels of microsatellites targeted towards specific classes of gene, but also suggests that in silico microsatellite variability may provide a useful proxy for PCR product polymorphism.
Erscheinungsjahr
2011
Zeitschriftentitel
PLoS ONE
Band
6
Ausgabe
8
Art.-Nr.
e23283
Seite(n)
e23283
ISSN
1932-6203
eISSN
1932-6203
Page URI
https://pub.uni-bielefeld.de/record/2397495

Zitieren

Hoffman J, Nichols HJ. A novel approach for mining polymorphic microsatellite markers in silico. PLoS ONE. 2011;6(8):e23283: e23283.
Hoffman, J., & Nichols, H. J. (2011). A novel approach for mining polymorphic microsatellite markers in silico. PLoS ONE, 6(8), e23283., e23283. doi:10.1371/journal.pone.0023283
Hoffman, J., and Nichols, H. J. (2011). A novel approach for mining polymorphic microsatellite markers in silico. PLoS ONE 6, e23283:e23283.
Hoffman, J., & Nichols, H.J., 2011. A novel approach for mining polymorphic microsatellite markers in silico. PLoS ONE, 6(8), p e23283: e23283.
J. Hoffman and H.J. Nichols, “A novel approach for mining polymorphic microsatellite markers in silico”, PLoS ONE, vol. 6, 2011, pp. e23283, : e23283.
Hoffman, J., Nichols, H.J.: A novel approach for mining polymorphic microsatellite markers in silico. PLoS ONE. 6, e23283 : e23283 (2011).
Hoffman, Joseph, and Nichols, H. J. “A novel approach for mining polymorphic microsatellite markers in silico”. PLoS ONE 6.8 (2011): e23283: e23283.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
This Item is protected by copyright and/or related rights. [...]
Volltext(e)
Access Level
OA Open Access
Zuletzt Hochgeladen
2019-09-06T08:57:57Z
MD5 Prüfsumme
61c26de38e81cad7495da33a750d0670

20 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Heterozygosity at neutral and immune loci is not associated with neonatal mortality due to microbial infection in Antarctic fur seals.
Litzke V, Ottensmann M, Forcada J, Heitzmann L, Ivan Hoffman J., Ecol Evol 9(14), 2019
PMID: 31380066
High-throughput sequencing and graph-based cluster analysis facilitate microsatellite development from a highly complex genome.
Shah AB, Schielzeth H, Albersmeier A, Kalinowski J, Hoffman JI., Ecol Evol 6(16), 2016
PMID: 27547349
Genomic Methods Take the Plunge: Recent Advances in High-Throughput Sequencing of Marine Mammals.
Cammen KM, Andrews KR, Carroll EL, Foote AD, Humble E, Khudyakov JI, Louis M, McGowen MR, Olsen MT, Van Cise AM., J Hered 107(6), 2016
PMID: 27511190
Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals.
Vukosavljev M, Esselink GD, van 't Westende WP, Cox P, Visser RG, Arens P, Smulders MJ., Mol Ecol Resour 15(1), 2015
PMID: 24893879
Microsatellites in Pursuit of Microbial Genome Evolution.
Saeed AF, Wang R, Wang S., Front Microbiol 6(), 2015
PMID: 26779133
Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals
Vukosavljev M, Esselink GD, ’t Westende WPC, Cox P, Visser RGF, Arens P, Smulders MJM., Mol Ecol Resour 15(1), 2015
PMID: IND601379373
An empirical review: Characteristics of plant microsatellite markers that confer higher levels of genetic variation.
Merritt BJ, Culley TM, Avanesyan A, Stokes R, Brzyski J., Appl Plant Sci 3(8), 2015
PMID: 26312192
PSR: polymorphic SSR retrieval.
Cantarella C, D'Agostino N., BMC Res Notes 8(), 2015
PMID: 26428628
Identification of conserved and polymorphic STRs for personal genomes.
Chen CM, Sio CP, Lu YL, Chang HT, Hu CH, Pai TW., BMC Genomics 15 Suppl 10(), 2014
PMID: 25560225
A combined strategy involving Sanger and 454 pyrosequencing increases genomic resources to aid in the management of reproduction, disease control and genetic selection in the turbot (Scophthalmus maximus).
Ribas L, Pardo BG, Fernández C, Alvarez-Diós JA, Gómez-Tato A, Quiroga MI, Planas JV, Sitjà-Bobadilla A, Martínez P, Piferrer F., BMC Genomics 14(), 2013
PMID: 23497389
Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats.
Cardoso SD, Gonçalves D, Robalo JI, Almada VC, Canário AV, Oliveira RF., Mar Genomics 11(), 2013
PMID: 23665344
Microsatellite markers for the yam bean Pachyrhizus (Fabaceae).
Delêtre M, Soengas B, Utge J, Lambourdière J, Sørensen M., Appl Plant Sci 1(7), 2013
PMID: 25202568
Characterization of the heart transcriptome of the white shark (Carcharodon carcharias).
Richards VP, Suzuki H, Stanhope MJ, Shivji MS., BMC Genomics 14(), 2013
PMID: 24112713

64 References

Daten bereitgestellt von Europe PubMed Central.

Mutation of human short tandem repeats.
Weber JL, Wong C., Hum. Mol. Genet. 2(8), 1993
PMID: 8401493
Simple sequences are ubiquitous repetitive components of eukaryotic genomes.
Tautz D, Renz M., Nucleic Acids Res. 12(10), 1984
PMID: 6328411
Microsatellites, from molecules to populations and back.
Jarne P, Lagoda PJ., Trends Ecol. Evol. (Amst.) 11(10), 1996
PMID: 21237902
Microsatellites and their application to population genetic studies.
Bruford MW, Wayne RK., Curr. Opin. Genet. Dev. 3(6), 1993
PMID: 8118220
Strategies for microsatellite isolation: a review.
Zane L, Bargelloni L, Patarnello T., Mol. Ecol. 11(1), 2002
PMID: 11903900
Low frequency of microsatellites in the avian genome.
Primmer CR, Raudsepp T, Chowdhary BP, Moller AP, Ellegren H., Genome Res. 7(5), 1997
PMID: 9149943
Challenges of microsatellite isolation in fungi.
Dutech C, Enjalbert J, Fournier E, Delmotte F, Barres B, Carlier J, Tharreau D, Giraud T., Fungal Genet. Biol. 44(10), 2007
PMID: 17659989
Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing.
Abdelkrim J, Robertson BC, Stanton J-AL, Gemmell NJ., 2009
Rapid identification of thousands of copperhead snake (Agkistrodon contortrix) microsatellite loci from modest amounts of 454 shotgun genome sequence.
Castoe TA, Poole AW, Gu W, Jason de Koning AP, Daza JM, Smith EN, Pollock DD., Mol Ecol Resour 10(2), 2009
PMID: 21565030
Ontology and diversity of transcript-associated microsatellites mined from a globe artichoke EST database.
Scaglione D, Acquadro A, Portis E, Taylor CA, Lanteri S, Knapp SJ., BMC Genomics 10(), 2009
PMID: 19785740
Genome-wide loss of diversity in the critically endangered Hawaiian monk seal.
Schultz JK, Marshall AJ, Pfunder M., 2010
Female fur seals show active choice for males that are heterozygous and unrelated.
Hoffman JI, Forcada J, Trathan PN, Amos W., Nature 445(7130), 2007
PMID: 17287726
Mitogenomic analyses of caniform relationships.
Arnason U, Gullberg A, Janke A, Kullberg M., Mol. Phylogenet. Evol. 45(3), 2007
PMID: 17919938
Associations among protein heterozygosity, growth rate, and developmental homeostasis.
Mitton JB, Grant MC., 1984
Tablet--next generation sequence assembly visualization.
Milne I, Bayer M, Cardle L, Shaw P, Stephen G, Wright F, Marshall D., Bioinformatics 26(3), 2009
PMID: 19965881
Primer3 on the WWW for general users and for biologist programmers.
Rozen S, Skaletsky H., 2000
Projectile biopsy sampling of fur seals.
Gemmell NJ, Majluf P., 1997
Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material.
Walsh PS, Metzger DA, Higuchi R., BioTechniques 10(4), 1991
PMID: 1867860

Sambrook J, Fritsch EF, Maniatis T., 1989
Genepop (Version 1.2) - population genetics software for exact tests of ecumenicism.
Raymond M, Rousset F., 1995
Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications.
Chakraborty R, De Andrade M, Daiger SP, Budowle B., Ann. Hum. Genet. 56(1), 1992
PMID: 1350188
MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.
Van C, Hutchinson WF, Wills DPM, Shipley P., 2004

AUTHOR UNKNOWN, 2005

Crawley MJ., 2002
A sharper Bonferroni procedure for multiple tests of sign.
Hochberg Y., 1988
Incidence and origin of "null" alleles in the (AC)n microsatellite markers.
Callen DF, Thompson AD, Shen Y, Phillips HA, Richards RI, Mulley JC, Sutherland GR., Am. J. Hum. Genet. 52(5), 1993
PMID: 8488841
Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies.
Pemberton JM, Slate J, Bancroft DR, Barrett JA., Mol. Ecol. 4(2), 1995
PMID: 7735527
Microsatellite null alleles in parentage analysis.
Dakin EE, Avise JC., Heredity (Edinb) 93(5), 2004
PMID: 15292911
Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants.
Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD., Plant Cell 14(7), 2002
PMID: 12119367
Association studies using random and “candidate” microsatellite loci in two infectious goat diseases.
Obexer-Ruff G, Sattler U, Martinez D, Maillard J-C, Chartier C., 2003
Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep.
Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK., Biol. Lett. 4(2), 2008
PMID: 18270161
Association screen for atopic dermatitis candidate gene regions using microsatellite markers in pooled DNA samples.
Hoffjan S, Parwez Q, Petrasch-Parwez E, Falkenstein D, Nothnagel M., 2006
An economic method for the fluorescent labeling of PCR fragments.
Schuelke M., Nat. Biotechnol. 18(2), 2000
PMID: 10657137
Meager genetic variability of the human malaria agent Plasmodium vivax.
Leclerc MC, Durand P, Gauthier C, Patot S, Billotte N., 2004
Unprecedented long-term genetic monomorphism in an endangered relict butterfly species.
Habel JC, Zachos FE, Finger A, Meyer M, Louy D., 2009
Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing.
Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski I, Marden JH., Mol. Ecol. 17(7), 2008
PMID: 18266620
Sampling the Arabidopsis transcriptome with massively parallel pyrosequencing.
Weber AP, Weber KL, Carr K, Wilkerson C, Ohlrogge JB., Plant Physiol. 144(1), 2007
PMID: 17351049
Microsatellites: simple sequences with complex evolution.
Ellegren H., 2004
The genome-wide determinants of human and chimpanzee microsatellite evolution.
Kelkar YD, Tyekucheva S, Chiaromonte F, Makova KD., Genome Res. 18(1), 2007
PMID: 18032720
Biased distribution of microsatellite motifs in the rice genome.
Grover A, Aishwarya V, Sharma PC., Mol. Genet. Genomics 277(5), 2007
PMID: 17237941
Genome sequencing in microfabricated high-density picolitre reactors.
Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM., Nature 437(7057), 2005
PMID: 16056220
Selection on MHC-linked microsatellite loci in sheep populations.
Santucci F, Ibrahim KM, Bruzzone A, Hewit GM., Heredity (Edinb) 99(3), 2007
PMID: 17519962
Signatures of natural selection in the human genome.
Bamshad M, Wooding SP., 2003
Mining microsatellites in eukaryotic genomes.
Sharma PC, Grover A, Kahl G., Trends Biotechnol. 25(11), 2007
PMID: 17945369
Detecting short tandem repeats from genome data: opening the software black box.
Merkel A, Gemmell N., Brief. Bioinformatics 9(5), 2008
PMID: 18621747
Microsatellite discovery by deep sequencing of enriched genomic libraries.
Santana Q, Coetzee M, Steenkamp E, Mlonyeni O, Hammond G, Wingfield M, Wingfield B., BioTechniques 46(3), 2009
PMID: 19317665
A panel of new microsatellite loci for genetic studies of Antarctic fur seals and other otariids.
Hoffman JI., 2009
Microsatellite null alleles and estimation of population differentiation.
Chapuis MP, Estoup A., Mol. Biol. Evol. 24(3), 2006
PMID: 17150975

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21853104
PubMed | Europe PMC

Suchen in

Google Scholar