Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly

Rosner R, Warzecha A-K (2011)
Plos One 6(10): e26886.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
OA 986.22 KB
Abstract / Bemerkung
Behavioral responses of an animal vary even when they are elicited by the same stimulus. This variability is due to stochastic processes within the nervous system and to the changing internal states of the animal. To what extent does the variability of neuronal responses account for the overall variability at the behavioral level? To address this question we evaluate the neuronal variability at the output stage of the blowfly's (Calliphora vicina) visual system by recording from motion-sensitive interneurons mediating head optomotor responses. By means of a simple modelling approach representing the sensory-motor transformation, we predict head movements on the basis of the recorded responses of motion-sensitive neurons and compare the variability of the predicted head movements with that of the observed ones. Large gain changes of optomotor head movements have previously been shown to go along with changes in the animals' activity state. Our modelling approach substantiates that these gain changes are imposed downstream of the motion-sensitive neurons of the visual system. Moreover, since predicted head movements are clearly more reliable than those actually observed, we conclude that substantial variability is introduced downstream of the visual system.
Plos One
Page URI


Rosner R, Warzecha A-K. Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly. Plos One. 2011;6(10): e26886.
Rosner, R., & Warzecha, A. - K. (2011). Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly. Plos One, 6(10), e26886.
Rosner, Ronny, and Warzecha, Anne-Kathrin. 2011. “Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly”. Plos One 6 (10): e26886.
Rosner, R., and Warzecha, A. - K. (2011). Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly. Plos One 6:e26886.
Rosner, R., & Warzecha, A.-K., 2011. Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly. Plos One, 6(10): e26886.
R. Rosner and A.-K. Warzecha, “Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly”, Plos One, vol. 6, 2011, : e26886.
Rosner, R., Warzecha, A.-K.: Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly. Plos One. 6, : e26886 (2011).
Rosner, Ronny, and Warzecha, Anne-Kathrin. “Relating neuronal to behavioral performance: Variability of optomotor responses in the blowfly”. Plos One 6.10 (2011): e26886.
Alle Dateien verfügbar unter der/den folgenden Lizenz(en):
Copyright Statement:
Dieses Objekt ist durch das Urheberrecht und/oder verwandte Schutzrechte geschützt. [...]
Access Level
OA Open Access
Zuletzt Hochgeladen
MD5 Prüfsumme

3 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Variability of human corticospinal excitability tracks the state of action preparation.
Klein-Flügge MC, Nobbs D, Pitcher JB, Bestmann S., J Neurosci 33(13), 2013
PMID: 23536071
Optogenetic control of fly optomotor responses.
Haikala V, Joesch M, Borst A, Mauss AS., J Neurosci 33(34), 2013
PMID: 23966712

61 References

Daten bereitgestellt von Europe PubMed Central.

Noise in the nervous system.
Faisal AA, Selen LP, Wolpert DM., Nat. Rev. Neurosci. 9(4), 2008
PMID: 18319728
Precision of speed discrimination and smooth pursuit eye movements.
Rasche C, Gegenfurtner KR., Vision Res. 49(5), 2009
PMID: 19126411
Open-loop speed discrimination performance of ocular following response and perception.
Boström KJ, Warzecha A-K., 2010
Impact of photon noise on the reliability of a motion-sensitive neuron in the fly's visual system.
Grewe J, Kretzberg J, Warzecha AK, Egelhaaf M., J. Neurosci. 23(34), 2003
PMID: 14645469
Reliability of Neural Coding on Different Stages of Visual Information Processing in an Insect Brain.
Grewe null, J null., 2007
Fly photoreceptors demonstrate energy-information trade-offs in neural coding.
Niven JE, Anderson JC, Laughlin SB., 2007
Sparse but specific temporal coding by spikes in an insect sensory-motor ocellar pathway.
Simmons PJ, van Steveninck RR., J. Exp. Biol. 213(Pt 15), 2010
PMID: 20639424
Coding Efficiency of Fly Motion Processing Is Set by Firing Rate, Not Firing Precision.
Spavieri DL, Eichner H, Borst A., 2010
Fly motion vision.
Borst A, Haag J, Reiff DF., Annu. Rev. Neurosci. 33(), 2010
PMID: 20225934
Real-time encoding of motion: Answerable questions and questionable answers from the fly's visual system.
Ruyter Rd, Borst A, Bialek W., 2001
Matching coding, circuits, cells, and molecules to signals: General principles of retinal design in the fly's eye.
Laughlin SB., 1994
Neuronal encoding of visual motion in real-time.
Warzecha A-K, Egelhaaf M., 2001
Intrinsic properties of biological motion detectors prevent the optomotor control system from getting unstable.
Warzecha A-K, Egelhaaf M., 1996
Variability of blowfly head optomotor responses.
Rosner R, Egelhaaf M, Grewe J, Warzecha AK., J. Exp. Biol. 212(Pt 8), 2009
PMID: 19329750
Behavioural state affects motion-sensitive neurones in the fly visual system.
Rosner R, Egelhaaf M, Warzecha AK., J. Exp. Biol. 213(2), 2010
PMID: 20038668
Active flight increases the gain of visual motion processing in Drosophila.
Maimon G, Straw AD, Dickinson MH., Nat. Neurosci. 13(3), 2010
PMID: 20154683
Walking modulates speed sensitivity in Drosophila motion vision.
Chiappe ME, Seelig JD, Reiser MB, Jayaraman V., Curr. Biol. 20(16), 2010
PMID: 20655222
Flight activity alters velocity tuning of fly motion-sensitive neurons.
Jung SN, Borst A, Haag J., J. Neurosci. 31(25), 2011
PMID: 21697373
Central gating of fly optomotor response.
Haag J, Wertz A, Borst A., Proc. Natl. Acad. Sci. U.S.A. 107(46), 2010
PMID: 21045125
Neural mechanisms of visual course control in insects.
Hausen K, Egelhaaf M., 1989
Novel approaches to visual information processing in insects: Case studies on neuronal computations in the blowfly.
Egelhaaf M, Grewe J, Karmeier K, Kern R, Kurtz R., 2005
Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly.
Krapp HG, Hengstenberg B, Hengstenberg R., J. Neurophysiol. 79(4), 1998
PMID: 9535957
The neck motor system of the fly, Calliphora erythrocephala. II. Sensory organization.
Milde JJ, Seyan HS, Strausfeld NJ., 1987
The neck motor system of the fly Calliphora erythrocephala I. Muscles and motor neurons.
Strausfeld NJ, Seyan HS, Milde JJ., 1987
Spike responses of 'non-spiking' visual interneurone.
Hengstenberg R., Nature 270(5635), 1977
PMID: 593352
Developmental neuroscience.
Arber S, Davis G., Curr. Opin. Neurobiol. 21(1), 2011
PMID: 21208796
Head movements in the flies (Calliphora) produced by deflexion of the halteres.
Sandeman DC, Markl H., 1980
Visual motion processing for initiation of smooth pursuit eye movements in humans.
Tychsen L, Lisberger SG., 1986
State-dependent performance of optic-flow processing interneurons.
Longden KD, Krapp HG., J. Neurophysiol. 102(6), 2009
PMID: 19812292
Nonlinear integration of visual and haltere inputs in fly neck motor neurons.
Huston SJ, Krapp HG., J. Neurosci. 29(42), 2009
PMID: 19846697
Order in spontaneous behavior.
Maye A, Hsieh CH, Sugihara G, Brembs B., PLoS ONE 2(5), 2007
PMID: 17505542
Electrical coupling of lobula plate tangential cells to a heterolateral motion-sensitive neuron in the fly.
Haag J, Borst A., 2008
Synaptic transfer of dynamical motion information between identified neurons in the visual system of the blowfly.
Warzecha A-K, Kurtz R, Egelhaaf M., 2003
Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron.
Haag J, Wertz A, Borst A., 2007
Dynamic properties of two control systems underlying visually guided turning in house-flies.
Egelhaaf M., 1987
Saccadic flight strategy facilitates collision avoidance: closed-loop performance of a cyberfly.
Lindemann JP, Weiss H, Moller R, Egelhaaf M., Biol Cybern 98(3), 2008
PMID: 18180948
Slow temporal filtering may largely explain the transformation of stick insect (Carausius morosus) extensor motor neuron activity into muscle movement.
Hooper SL, Guschlbauer C, von G, Büschges A., 2007
Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropil in Calliphora erythrocephala.
Strausfeld NJ, Bassemir UK., 1985
Convergence of visual, haltere, and prosternal inputs at neck motor neurons of Calliphora erythrocephala.
Strausfeld NJ, Seyan HS., 1985
Natural neural output that produces highly variable locomotory movements.
Hooper SL, Guschlbauer C, von Uckermann G, Buschges A., J. Neurophysiol. 96(4), 2006
PMID: 16775206
Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics
Schilstra C, Hateren JH., J. Exp. Biol. 202 (Pt 11)(), 1999
PMID: 10229694
Saccadic head and thorax movements in freely walking blowflies.
Blaj G, van JH., 2004
Multisensory control in insect oculomotor systems.
Hengstenberg R., 1993
The halteres of the blowfly Calliphora. II. Three-dimensional organization of compensatory reactions to real and simulated rotations.
Nalbach G, Hengstenberg R., 1994
Neuronal precision and the limits for acoustic signal recognition in a small neuronal network.
Neuhofer D, Stemmler M, Ronacher B., 2011
Increase of neuronal response variability at higher processing levels as revealed by simultaneous recordings.
Vogel A, Hennig RM, Ronacher B., 2005
Common visual response properties of giant vertical cells in the lobula plate of the blowfly Calliphora.
Hengstenberg R., 1982
Spectral and polarization sensitivity of the dipteran visual system.
McCann GD, Arnett DW., J. Gen. Physiol. 59(5), 1972
PMID: 5027759
Electrophysiological analysis of the fly retina. I. Comparative properties of R1-6 and R7 and R8.
Hardie RC., 1979

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 22066014
PubMed | Europe PMC

Suchen in

Google Scholar