Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle

Staunton L, Jockusch H, Wiegand C, Albrecht T, Ohlendieck K (2011)
Molecular BioSystems 7(8): 2480-2489.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Staunton, Lisa; Jockusch, HaraldUniBi; Wiegand, ChristianeUniBi; Albrecht, Timo; Ohlendieck, Kay
Abstract / Bemerkung
Myotonia is a symptom of various genetic and acquired skeletal muscular disorders and is characterized by hyperexcitability of the sarcolemma. Here, we have performed a comparative proteomic study of the genetic mouse models ADR, MTO and MTO*5J of human congenital myotonia in order to determine myotonia-specific changes in the global protein complement of gastrocnemius muscle. Proteomic analyses of myotonia in the mouse, which is caused by mutations in the gene encoding the muscular chloride channel Clc1, revealed a generally perturbed protein expression pattern in severely affected ADR and MTO muscle, but less pronounced alterations in mildly diseased MTO*5J mice. Alterations were found in major metabolic pathways, the contractile machinery, ion handling elements, the cellular stress response and cell signaling mechanisms, clearly confirming a glycolytic-to-oxidative transformation process in myotonic fast muscle. In the long-term, a detailed biomarker signature of myotonia will improve our understanding of the pathobiochemical processes underlying this disorder and be helpful in determining how a single mutation in a tissue-specific gene can trigger severe downstream effects on the expression levels of a very large number of genes in contractile tissues.
Erscheinungsjahr
2011
Zeitschriftentitel
Molecular BioSystems
Band
7
Ausgabe
8
Seite(n)
2480-2489
ISSN
1742-206X
eISSN
1742-2051
Page URI
https://pub.uni-bielefeld.de/record/2394723

Zitieren

Staunton L, Jockusch H, Wiegand C, Albrecht T, Ohlendieck K. Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Molecular BioSystems. 2011;7(8):2480-2489.
Staunton, L., Jockusch, H., Wiegand, C., Albrecht, T., & Ohlendieck, K. (2011). Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Molecular BioSystems, 7(8), 2480-2489. https://doi.org/10.1039/c1mb05043e
Staunton, L., Jockusch, H., Wiegand, C., Albrecht, T., and Ohlendieck, K. (2011). Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Molecular BioSystems 7, 2480-2489.
Staunton, L., et al., 2011. Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Molecular BioSystems, 7(8), p 2480-2489.
L. Staunton, et al., “Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle”, Molecular BioSystems, vol. 7, 2011, pp. 2480-2489.
Staunton, L., Jockusch, H., Wiegand, C., Albrecht, T., Ohlendieck, K.: Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle. Molecular BioSystems. 7, 2480-2489 (2011).
Staunton, Lisa, Jockusch, Harald, Wiegand, Christiane, Albrecht, Timo, and Ohlendieck, Kay. “Identification of secondary effects of hyperexcitability by proteomic profiling of myotonic mouse muscle”. Molecular BioSystems 7.8 (2011): 2480-2489.

11 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Proteomic profiling of muscle fibre type shifting in neuromuscular diseases.
Dowling P, Murphy S, Ohlendieck K., Expert Rev Proteomics 13(8), 2016
PMID: 27376776
Comparative Skeletal Muscle Proteomics Using Two-Dimensional Gel Electrophoresis.
Murphy S, Dowling P, Ohlendieck K., Proteomes 4(3), 2016
PMID: 28248237
Pathoproteomics of testicular tissue deficient in the GARP component VPS54: the wobbler mouse model of globozoospermia.
Jockusch H, Holland A, Staunton L, Schmitt-John T, Heimann P, Dowling P, Ohlendieck K., Proteomics 14(7-8), 2014
PMID: 24115398
Proteomic profiling of the contractile apparatus from skeletal muscle.
Holland A, Ohlendieck K., Expert Rev Proteomics 10(3), 2013
PMID: 23777215
Profiling of age-related changes in the tibialis anterior muscle proteome of the mdx mouse model of dystrophinopathy.
Carberry S, Zweyer M, Swandulla D, Ohlendieck K., J Biomed Biotechnol 2012(), 2012
PMID: 23093855

42 References

Daten bereitgestellt von Europe PubMed Central.

Skeletal muscle channelopathies.
Jurkat-Rott K, Lerche H, Lehmann-Horn F., J. Neurol. 249(11), 2002
PMID: 12420087
Membrane changes in cells from myotonia patients.
Rudel R, Lehmann-Horn F., Physiol. Rev. 65(2), 1985
PMID: 2580324
The non-dystrophic myotonias: molecular pathogenesis, diagnosis and treatment.
Matthews E, Fialho D, Tan SV, Venance SL, Cannon SC, Sternberg D, Fontaine B, Amato AA, Barohn RJ, Griggs RC, Hanna MG; CINCH Investigators., Brain 133(Pt 1), 2009
PMID: 19917643
Chloride channelopathies.
Planells-Cases R, Jentsch TJ., Biochim. Biophys. Acta 1792(3), 2009
PMID: 19708126
Myotonia congenita.
Lossin C, George AL Jr., Adv. Genet. 63(), 2008
PMID: 19185184

Doran, Proteomics: Clin. Appl. 1(), 2007
Developmental control of the excitability of muscle: transplantation experiments on a myotonic mouse mutant.
Fuchtbauer EM, Reininghaus J, Jockusch H., Proc. Natl. Acad. Sci. U.S.A. 85(11), 1988
PMID: 3375245
Inactivation of muscle chloride channel by transposon insertion in myotonic mice.
Steinmeyer K, Klocke R, Ortland C, Gronemeier M, Jockusch H, Grunder S, Jentsch TJ., Nature 354(6351), 1991
PMID: 1659665
The myotonic mouse mutant ADR: electrophysiology of the muscle fiber.
Mehrke G, Brinkmeier H, Jockusch H., Muscle Nerve 11(5), 1988
PMID: 2453798
Nonsense and missense mutations in the muscular chloride channel gene Clc-1 of myotonic mice.
Gronemeier M, Condie A, Prosser J, Steinmeyer K, Jentsch TJ, Jockusch H., J. Biol. Chem. 269(8), 1994
PMID: 8119941
Calcium-binding protein, parvalbumin, is reduced in mutant mammalian muscle with abnormal contractile properties.
Stuhlfauth I, Reininghaus J, Jockusch H, Heizmann CW., Proc. Natl. Acad. Sci. U.S.A. 81(15), 1984
PMID: 6589628
The myotonic mouse mutant ADR: physiological and histochemical properties of muscle.
Reininghaus J, Fuchtbauer EM, Bertram K, Jockusch H., Muscle Nerve 11(5), 1988
PMID: 2967431
Reduction of myosin-light-chain phosphorylation and of parvalbumin content in myotonic mouse muscle and its reversal by tocainide.
Jockusch H, Reininghaus J, Stuhlfauth I, Zippel M., Eur. J. Biochem. 171(1-2), 1988
PMID: 3123225
Opposite regulation of the mRNAs for parvalbumin and p19/6.8 in myotonic mouse muscle.
Kluxen FW, Schoffl F, Berchtold MW, Jockusch H., Eur. J. Biochem. 176(1), 1988
PMID: 3138114
Specific isomyosin proportions in hyperexcitable and physiologically denervated mouse muscle.
Agbulut O, Noirez P, Butler-Browne G, Jockusch H., FEBS Lett. 561(1-3), 2004
PMID: 15013776
Transitions of muscle fiber phenotypic profiles.
Pette D, Staron RS., Histochem. Cell Biol. 115(5), 2001
PMID: 11449884
Proteomic profiling of chronic low-frequency stimulated fast muscle.
Donoghue P, Doran P, Wynne K, Pedersen K, Dunn MJ, Ohlendieck K., Proteomics 7(18), 2007
PMID: 17708595
Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP.
Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K., Proteomics 6(16), 2006
PMID: 16835851
Phosphoproteomic analysis of aged skeletal muscle.
Gannon J, Staunton L, O'Connell K, Doran P, Ohlendieck K., Int. J. Mol. Med. 22(1), 2008
PMID: 18575773
High-resolution two-dimensional electrophoresis.
Weiss W, Gorg A., Methods Mol. Biol. 564(), 2009
PMID: 19544015
Two-dimensional gel electrophoresis in proteomics: Past, present and future.
Rabilloud T, Chevallet M, Luche S, Lelong C., J Proteomics 73(11), 2010
PMID: 20685252

Reichmann, Pfluegers Arch. 418(), 1991

Hicks, Am. J. Physiol. 2273(), 1997
Application of animal models: chronic electrical stimulation-induced contractile activity.
Ljubicic V, Adhihetty PJ, Hood DA., Can J Appl Physiol 30(5), 2005
PMID: 16293907
Differential expression of the fast skeletal muscle proteome following chronic low-frequency stimulation.
Donoghue P, Doran P, Dowling P, Ohlendieck K., Biochim. Biophys. Acta 1752(2), 2005
PMID: 16140047
Multifaceted roles of glycolytic enzymes.
Kim JW, Dang CV., Trends Biochem. Sci. 30(3), 2005
PMID: 15752986
Proteomics of skeletal muscle glycolysis.
Ohlendieck K., Biochim. Biophys. Acta 1804(11), 2010
PMID: 20709194
Carbon dioxide transport and carbonic anhydrase in blood and muscle.
Geers C, Gros G., Physiol. Rev. 80(2), 2000
PMID: 10747205
The human PDI family: versatility packed into a single fold.
Appenzeller-Herzog C, Ellgaard L., Biochim. Biophys. Acta 1783(4), 2007
PMID: 18093543
Activity-dependent repression of muscle genes by NFAT.
Rana ZA, Gundersen K, Buonanno A., Proc. Natl. Acad. Sci. U.S.A. 105(15), 2008
PMID: 18408153
NFAT isoforms control activity-dependent muscle fiber type specification.
Calabria E, Ciciliot S, Moretti I, Garcia M, Picard A, Dyar KA, Pallafacchina G, Tothova J, Schiaffino S, Murgia M., Proc. Natl. Acad. Sci. U.S.A. 106(32), 2009
PMID: 19633193
Increased density of satellite cells in the absence of fibre degeneration in muscle of myotonic mice.
Schimmelpfeng J, Jockusch H, Heimann P., Cell Tissue Res. 249(2), 1987
PMID: 3621304

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21629954
PubMed | Europe PMC

Suchen in

Google Scholar