On a random scaled porous media equation

Barbu V, Röckner M (2011)
Journal of Differential Equations 251(9): 2494-2514.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Barbu, Viorel; Röckner, MichaelUniBi
Abstract / Bemerkung
It is shown that a random scaled porous media equation arising from a stochastic porous media equation with linear multiplicative noise through a random transformation is well-posed in L(infinity). In the fast diffusion case we show existence in L(p). (C) 2011 Elsevier Inc. All rights reserved.
Stichworte
Sobolev embedding theorem; Dirichlet problem; Stochastic basis; Stochastic porous media equation; Wiener process
Erscheinungsjahr
2011
Zeitschriftentitel
Journal of Differential Equations
Band
251
Ausgabe
9
Seite(n)
2494-2514
ISSN
0022-0396
Page URI
https://pub.uni-bielefeld.de/record/2394382

Zitieren

Barbu V, Röckner M. On a random scaled porous media equation. Journal of Differential Equations. 2011;251(9):2494-2514.
Barbu, V., & Röckner, M. (2011). On a random scaled porous media equation. Journal of Differential Equations, 251(9), 2494-2514. https://doi.org/10.1016/j.jde.2011.07.012
Barbu, V., and Röckner, M. (2011). On a random scaled porous media equation. Journal of Differential Equations 251, 2494-2514.
Barbu, V., & Röckner, M., 2011. On a random scaled porous media equation. Journal of Differential Equations, 251(9), p 2494-2514.
V. Barbu and M. Röckner, “On a random scaled porous media equation”, Journal of Differential Equations, vol. 251, 2011, pp. 2494-2514.
Barbu, V., Röckner, M.: On a random scaled porous media equation. Journal of Differential Equations. 251, 2494-2514 (2011).
Barbu, Viorel, and Röckner, Michael. “On a random scaled porous media equation”. Journal of Differential Equations 251.9 (2011): 2494-2514.

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Suchen in

Google Scholar