From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents
Dreyer A, Ennen I, Koop T, Hütten A, Jutzi P (2011)
Small 7(21): 3075-3086.
Zeitschriftenaufsatz
| Veröffentlicht | Englisch
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Einrichtung
Fakultät für Chemie > Physikalische Chemie II
Centrum für Biotechnologie > Institut für Biophysik und Nanowissenschaften
Fakultät für Physik > AG Dünne Schichten & Physik der Nanostrukturen
Centrum für Biotechnologie > Arbeitsgruppe A. Hütten
Fakultät für Chemie > Anorganische Chemie und Strukturchemie
Centrum für Biotechnologie > Institut für Biophysik und Nanowissenschaften
Fakultät für Physik > AG Dünne Schichten & Physik der Nanostrukturen
Centrum für Biotechnologie > Arbeitsgruppe A. Hütten
Fakultät für Chemie > Anorganische Chemie und Strukturchemie
Abstract / Bemerkung
Routes are presented for synthesizing nano- and mesostructured β-tin particles in the form of monocrystalline spheres, cubes, and bars, as well as polycrystalline rods and needles, by the decomposition of decamethylstannocene in organic solvents under various conditions. The formation of the observed shapes is based on the presence of liquidlike and of partly crystalline droplets. These particle stages allow structure-determining processes such as entire coalescence, oriented superficial coalescence or superficial induced crystallization. Entire coalescence and oriented superficial coalescence take place in the absence of surfactants; the superficially induced crystallization occurs in the presence of ionic additives. The observed tin morphologies depend on the competition between droplet growth and crystallization behavior. The different tin particles are investigated by electron microscopy (SEM, TEM, HRTEM), selected area electron diffraction (SAED), and differential scanning calorimetry (DSC).
Erscheinungsjahr
2011
Zeitschriftentitel
Small
Band
7
Ausgabe
21
Seite(n)
3075-3086
ISSN
1613-6810
Page URI
https://pub.uni-bielefeld.de/record/2381152
Zitieren
Dreyer A, Ennen I, Koop T, Hütten A, Jutzi P. From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small. 2011;7(21):3075-3086.
Dreyer, A., Ennen, I., Koop, T., Hütten, A., & Jutzi, P. (2011). From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small, 7(21), 3075-3086. https://doi.org/10.1002/smll.201101085
Dreyer, Axel, Ennen, Inga, Koop, Thomas, Hütten, Andreas, and Jutzi, Peter. 2011. “From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents”. Small 7 (21): 3075-3086.
Dreyer, A., Ennen, I., Koop, T., Hütten, A., and Jutzi, P. (2011). From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small 7, 3075-3086.
Dreyer, A., et al., 2011. From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small, 7(21), p 3075-3086.
A. Dreyer, et al., “From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents”, Small, vol. 7, 2011, pp. 3075-3086.
Dreyer, A., Ennen, I., Koop, T., Hütten, A., Jutzi, P.: From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents. Small. 7, 3075-3086 (2011).
Dreyer, Axel, Ennen, Inga, Koop, Thomas, Hütten, Andreas, and Jutzi, Peter. “From Nanoscale Liquid Spheres to Anisotropic Crystalline Particles of Tin: Decomposition of Decamethylstannocene in Organic Solvents”. Small 7.21 (2011): 3075-3086.
Daten bereitgestellt von European Bioinformatics Institute (EBI)
2 Zitationen in Europe PMC
Daten bereitgestellt von Europe PubMed Central.
Basil Seed Inspired Design for a Monodisperse Core-Shell Sn@C Hybrid Confined in a Carbon Matrix for Enhanced Lithium-Storage Performance.
Qin J, Liu B, Cao M., Chem Asian J 11(24), 2016
PMID: 27749999
Qin J, Liu B, Cao M., Chem Asian J 11(24), 2016
PMID: 27749999
Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses.
Wolff A, Hetaba W, Wißbrock M, Löffler S, Mill N, Eckstädt K, Dreyer A, Ennen I, Sewald N, Schattschneider P, Hütten A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605288
Wolff A, Hetaba W, Wißbrock M, Löffler S, Mill N, Eckstädt K, Dreyer A, Ennen I, Sewald N, Schattschneider P, Hütten A., Beilstein J Nanotechnol 5(), 2014
PMID: 24605288
46 References
Daten bereitgestellt von Europe PubMed Central.
Schmid, 1998
Xia, Angew. Chem. 121(), 2009
Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?
Xia Y, Xiong Y, Lim B, Skrabalak SE., Angew. Chem. Int. Ed. Engl. 48(1), 2009
PMID: 19053095
Xia Y, Xiong Y, Lim B, Skrabalak SE., Angew. Chem. Int. Ed. Engl. 48(1), 2009
PMID: 19053095
Insights into phase transition kinetics from colloid science.
Anderson VJ, Lekkerkerker HN., Nature 416(6883), 2002
PMID: 11976674
Anderson VJ, Lekkerkerker HN., Nature 416(6883), 2002
PMID: 11976674
LaMer, J. Am. Chem. Soc. 72(), 1950
Volmer, Z. Phys. Chem. 119(), 1926
Becker, Ann. Phys. 24(), 1935
Enhancement of protein crystal nucleation by critical density fluctuations.
ten Wolde PR, Frenkel D., Science 277(5334), 1997
PMID: 9302288
ten Wolde PR, Frenkel D., Science 277(5334), 1997
PMID: 9302288
Vekilov, Cryst. Growth Des. 4(), 2004
Nucleation of crystals from solution: classical and two-step models.
Erdemir D, Lee AY, Myerson AS., Acc. Chem. Res. 42(5), 2009
PMID: 19402623
Erdemir D, Lee AY, Myerson AS., Acc. Chem. Res. 42(5), 2009
PMID: 19402623
Zhang, Angew. Chem. 121(), 2009
Nucleation: what happens at the initial stage?
Zhang TH, Liu XY., Angew. Chem. Int. Ed. Engl. 48(7), 2009
PMID: 19132645
Zhang TH, Liu XY., Angew. Chem. Int. Ed. Engl. 48(7), 2009
PMID: 19132645
Wronski, Brit. J. Appl. Phys. 18(), 1967
Buffat, Physical Review A 13(), 1976
Couchman, Nature 269(), 1977
Schierning, J. Appl. Phys. 103(), 2008
LSPR study of the kinetics of the liquid-solid phase transition in Sn nanoparticles.
Schwind M, Zhdanov VP, Zoric I, Kasemo B., Nano Lett. 10(3), 2010
PMID: 20108946
Schwind M, Zhdanov VP, Zoric I, Kasemo B., Nano Lett. 10(3), 2010
PMID: 20108946
Soulantica, Angew. Chem. 115(), 2003
Spontaneous formation of ordered 3D superlattices of nanocrystals from polydisperse colloidal solutions.
Soulantica K, Maisonnat A, Fromen MC, Casanove MJ, Chaudret B., Angew. Chem. Int. Ed. Engl. 42(17), 2003
PMID: 12730977
Soulantica K, Maisonnat A, Fromen MC, Casanove MJ, Chaudret B., Angew. Chem. Int. Ed. Engl. 42(17), 2003
PMID: 12730977
Veith, Eur. J. Inorg. Chem. 18(), 2005
Nanostructures of Sn and their enhanced, shape-dependent superconducting properties.
Hsu YJ, Lu SY, Lin YF., Small 2(2), 2006
PMID: 17193034
Hsu YJ, Lu SY, Lin YF., Small 2(2), 2006
PMID: 17193034
Wang, Nano Lett. 4(), 2004
Jutzi, Chem. Ber. 113(), 1980
Variation with temperature of the nucleation rate of supercooled liquid tin and water drops.
VONNEGUT B., J Colloid Sci 3(6), 1948
PMID: 18106125
VONNEGUT B., J Colloid Sci 3(6), 1948
PMID: 18106125
Pound, J. Am. Chem. Soc. 74(), 1952
Turnbull, J. Chem. Phys. 18(), 1950
Oshima, Z. Phys. D 27(), 1993
Delogu, J. Mater. Sci. 43(), 2008
AUTHOR UNKNOWN, 0
Vitos, Surface Science 411(), 1998
Pacholski, Angew. Chem. 114(), 2002
Self-assembly of ZnO: from nanodots to nanorods.
Pacholski C, Kornowski A, Weller H., Angew. Chem. Int. Ed. Engl. 41(7), 2002
PMID: 12491255
Pacholski C, Kornowski A, Weller H., Angew. Chem. Int. Ed. Engl. 41(7), 2002
PMID: 12491255
Giersig, J. Mater. Chem. 14(), 2004
Imperfect oriented attachment: dislocation generation in defect-free nanocrystals
Penn RL, Banfield JF., Science 281(5379), 1998
PMID: 9703506
Penn RL, Banfield JF., Science 281(5379), 1998
PMID: 9703506
Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products.
Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL., Science 289(5480), 2000
PMID: 10926531
Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL., Science 289(5480), 2000
PMID: 10926531
Oriented attachment and mesocrystals: non-classical crystallization mechanisms based on nanoparticle assembly.
Niederberger M, Colfen H., Phys Chem Chem Phys 8(28), 2006
PMID: 16835675
Niederberger M, Colfen H., Phys Chem Chem Phys 8(28), 2006
PMID: 16835675
The role of crystal polarity in alpha-amino acid crystals for induced nucleation of ice.
Gavish M, Wang JL, Eisenstein M, Lahav M, Leiserowitz L., Science 256(5058), 1992
PMID: 1589763
Gavish M, Wang JL, Eisenstein M, Lahav M, Leiserowitz L., Science 256(5058), 1992
PMID: 1589763
Water freezes differently on positively and negatively charged surfaces of pyroelectric materials.
Ehre D, Lavert E, Lahav M, Lubomirsky I., Science 327(5966), 2010
PMID: 20133568
Ehre D, Lavert E, Lahav M, Lubomirsky I., Science 327(5966), 2010
PMID: 20133568
Merry, Acta Metall. 32(), 1984
Trentler, Science 270(), 1995
Wang, Phys. Chem. B 108(), 2004
von, Z. Phys. 21(), 1917
A multi-rate kinetic model for spontaneous oriented attachment of CdS nanorods.
Gunning RD, O'Sullivan C, Ryan KM., Phys Chem Chem Phys 12(39), 2010
PMID: 20714581
Gunning RD, O'Sullivan C, Ryan KM., Phys Chem Chem Phys 12(39), 2010
PMID: 20714581
Park, Angew. Chem. 119(), 2007
Synthesis of monodisperse spherical nanocrystals.
Park J, Joo J, Kwon SG, Jang Y, Hyeon T., Angew. Chem. Int. Ed. Engl. 46(25), 2007
PMID: 17525914
Park J, Joo J, Kwon SG, Jang Y, Hyeon T., Angew. Chem. Int. Ed. Engl. 46(25), 2007
PMID: 17525914
Colloidal nanocrystal synthesis and the organic-inorganic interface.
Yin Y, Alivisatos AP., Nature 437(7059), 2005
PMID: 16193041
Yin Y, Alivisatos AP., Nature 437(7059), 2005
PMID: 16193041
Export
Markieren/ Markierung löschen
Markierte Publikationen
Web of Science
Dieser Datensatz im Web of Science®Quellen
PMID: 21932284
PubMed | Europe PMC
Suchen in