Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences

Barzantny H, Brune I, Tauch A (2011)
International Journal of Cosmetic Science 34(1): 2-11.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Abstract / Bemerkung
During the past few decades, there has been an increased interest in the essential role of commensal skin bacteria in human body odour formation. It is now generally accepted that skin bacteria cause body odour by biotransformation of sweat components secreted in the human axillae. Especially, aerobic corynebacteria have been shown to contribute strongly to axillary malodour, whereas other human skin residents seem to have little influence. Analysis of odoriferous sweat components has shown that the major odour-causing substances in human sweat include steroid derivatives, short volatile branched-chain fatty acids and sulphanylalkanols. In this mini-review, we describe the molecular basis of the four most extensively studied routes of human body odour formation, while focusing on the underlying enzymatic processes. Considering the previously reported role of β-oxidation in odour formation, we analysed the genetic repertoire of eight Corynebacterium species concerning fatty acid metabolism. We particularly focused on the metabolic abilities of the lipophilic axillary isolate Corynebacterium jeikeium K411.
Erscheinungsjahr
Zeitschriftentitel
International Journal of Cosmetic Science
Band
34
Ausgabe
1
Seite(n)
2-11
ISSN
PUB-ID

Zitieren

Barzantny H, Brune I, Tauch A. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. International Journal of Cosmetic Science. 2011;34(1):2-11.
Barzantny, H., Brune, I., & Tauch, A. (2011). Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. International Journal of Cosmetic Science, 34(1), 2-11. doi:10.1111/j.1468-2494.2011.00669.x
Barzantny, H., Brune, I., and Tauch, A. (2011). Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. International Journal of Cosmetic Science 34, 2-11.
Barzantny, H., Brune, I., & Tauch, A., 2011. Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. International Journal of Cosmetic Science, 34(1), p 2-11.
H. Barzantny, I. Brune, and A. Tauch, “Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences”, International Journal of Cosmetic Science, vol. 34, 2011, pp. 2-11.
Barzantny, H., Brune, I., Tauch, A.: Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences. International Journal of Cosmetic Science. 34, 2-11 (2011).
Barzantny, Helena, Brune, Iris, and Tauch, Andreas. “Molecular basis of human body odour formation: insights deduced from corynebacterial genome sequences”. International Journal of Cosmetic Science 34.1 (2011): 2-11.

21 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Sensory evaluation and chemical analysis of exhaled and dermally emitted bioeffluents.
Tsushima S, Wargocki P, Tanabe S., Indoor Air 28(1), 2018
PMID: 28892563
In Vivo Roles of Fatty Acid Biosynthesis Enzymes in Biosynthesis of Biotin and α-Lipoic Acid in Corynebacterium glutamicum.
Ikeda M, Nagashima T, Nakamura E, Kato R, Ohshita M, Hayashi M, Takeno S., Appl Environ Microbiol 83(19), 2017
PMID: 28754705
RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum.
Walter S, Rademacher F, Kobinger N, Simanski M, Gläser R, Harder J., Sci Rep 7(1), 2017
PMID: 29066761
The Effect of Ethnicity on Human Axillary Odorant Production.
Prokop-Prigge KA, Greene K, Varallo L, Wysocki CJ, Preti G., J Chem Ecol 42(1), 2016
PMID: 26634572
Plastic Antibodies for Cosmetics: Molecularly Imprinted Polymers Scavenge Precursors of Malodors.
Nestora S, Merlier F, Beyazit S, Prost E, Duma L, Baril B, Greaves A, Haupt K, Tse Sum Bui B., Angew Chem Int Ed Engl 55(21), 2016
PMID: 27060928
Mapping axillary microbiota responsible for body odours using a culture-independent approach.
Troccaz M, Gaïa N, Beccucci S, Schrenzel J, Cayeux I, Starkenmann C, Lazarevic V., Microbiome 3(1), 2015
PMID: 25653852
Corynebacterium urealyticum: a comprehensive review of an understated organism.
Salem N, Salem L, Saber S, Ismail G, Bluth MH., Infect Drug Resist 8(), 2015
PMID: 26056481
Corynebacterium ulcerans cutaneous diphtheria.
Moore LSP, Leslie A, Meltzer M, Sandison A, Efstratiou A, Sriskandan S., Lancet Infect Dis 15(9), 2015
PMID: 26189434
Deodorants and antiperspirants affect the axillary bacterial community.
Callewaert C, Hutapea P, Van de Wiele T, Boon N., Arch Dermatol Res 306(8), 2014
PMID: 25077920
Microbial odor profile of polyester and cotton clothes after a fitness session.
Callewaert C, De Maeseneire E, Kerckhof FM, Verliefde A, Van de Wiele T, Boon N., Appl Environ Microbiol 80(21), 2014
PMID: 25128346
Microbiological and biochemical origins of human axillary odour.
James AG, Austin CJ, Cox DS, Taylor D, Calvert R., FEMS Microbiol Ecol 83(3), 2013
PMID: 23278215
Daily battle against body odor: towards the activity of the axillary microbiota.
Fredrich E, Barzantny H, Brune I, Tauch A., Trends Microbiol 21(6), 2013
PMID: 23566668
Human skin volatiles: a review.
Dormont L, Bessière JM, Cohuet A., J Chem Ecol 39(5), 2013
PMID: 23615881
Development of biotin-prototrophic and -hyperauxotrophic Corynebacterium glutamicum strains.
Ikeda M, Miyamoto A, Mutoh S, Kitano Y, Tajima M, Shirakura D, Takasaki M, Mitsuhashi S, Takeno S., Appl Environ Microbiol 79(15), 2013
PMID: 23709504
Development of fatty acid-producing Corynebacterium glutamicum strains.
Takeno S, Takasaki M, Urabayashi A, Mimura A, Muramatsu T, Mitsuhashi S, Ikeda M., Appl Environ Microbiol 79(21), 2013
PMID: 23995924
Efficient sweat reduction of three different antiperspirant application forms during stress-induced sweating.
Schmidt-Rose T, Lehmbeck F, Bürger A, Windisch B, Keyhani R, Max H., Int J Cosmet Sci 35(6), 2013
PMID: 23906286
Identification of compounds inhibiting the C-S lyase activity of a cell extract from a Staphylococcus sp. isolated from human skin.
Egert M, Höhne HM, Weber T, Simmering R, Banowski B, Breves R., Lett Appl Microbiol 57(6), 2013
PMID: 23941521
Symbiotic bacteria appear to mediate hyena social odors.
Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM., Proc Natl Acad Sci U S A 110(49), 2013
PMID: 24218592
Complete genome sequence, lifestyle, and multi-drug resistance of the human pathogen Corynebacterium resistens DSM 45100 isolated from blood samples of a leukemia patient.
Schröder J, Maus I, Meyer K, Wördemann S, Blom J, Jaenicke S, Schneider J, Trost E, Tauch A., BMC Genomics 13(), 2012
PMID: 22524407

72 References

Daten bereitgestellt von Europe PubMed Central.

Epidermal barrier formation and recovery in skin disorders.
Segre JA., J. Clin. Invest. 116(5), 2006
PMID: 16670755
Skin microbiota: a source of disease or defence?
Cogen AL, Nizet V, Gallo RL., Br. J. Dermatol. 158(3), 2008
PMID: 18275522
The human intestinal microbiome: a new frontier of human biology.
Hattori M, Taylor TD., DNA Res. 16(1), 2009
PMID: 19147530
Topographical and temporal diversity of the human skin microbiome.
Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC; NISC Comparative Sequencing Program, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA., Science 324(5931), 2009
PMID: 19478181
Role of the gut microbiota in defining human health.
Fujimura KE, Slusher NA, Cabana MD, Lynch SV., Expert Rev Anti Infect Ther 8(4), 2010
PMID: 20377338
The effect of lipids on the adherence of axillary aerobic coryneform bacteria.
Bojar RA, Tue CJ, Holland KT., Lett. Appl. Microbiol. 38(6), 2004
PMID: 15130141
Steroid analysis of human apocrine secretion.
Labows JN, Preti G, Hoelzle E, Leyden J, Kligman A., Steroids 34(3), 1979
PMID: 158859
Anatomical variation in the amount and composition of human skin surface lipid.
Greene RS, Downing DT, Pochi PE, Strauss JS., J. Invest. Dermatol. 54(3), 1970
PMID: 5436951
A short history of sweat gland biology.
Wilke K, Martin A, Terstegen L, Biel SS., Int J Cosmet Sci 29(3), 2007
PMID: 18489347
Effective prevention of stress-induced sweating and axillary malodour formation in teenagers
Martin, Int. J. Cosmet. Sci. 33(), 2007
The regional distribution of emotional sweating in man.
Allen JA, Armstrong JE, Roddie IC., J. Physiol. (Lond.) 235(3), 1973
PMID: 4772406
The physiology of the human axillary apocrine sweat gland.
SHELLEY WB, HURLEY HJ Jr., J. Invest. Dermatol. 20(4), 1953
PMID: 13052978
Characterization of the microflora of the human axilla.
Taylor D, Daulby A, Grimshaw S, James G, Mercer J, Vaziri S., Int J Cosmet Sci 25(3), 2003
PMID: 18494895
Generation of volatile fatty acids by axillary bacteria.
James AG, Hyliands D, Johnston H., Int J Cosmet Sci 26(3), 2004
PMID: 18494871
Fatty acid metabolism by cutaneous bacteria and its role in axillary malodour
James, World J. Microbiol. Biotechnol. 20(), 2004
beta-oxidation - strategies for the metabolism of a wide variety of acyl-CoA esters.
Hiltunen JK, Qin Y., Biochim. Biophys. Acta 1484(2-3), 2000
PMID: 10760462
A comprehensive proteome map of the lipid-requiring nosocomial pathogen Corynebacterium jeikeium K411.
Hansmeier N, Chao TC, Daschkey S, Musken M, Kalinowski J, Puhler A, Tauch A., Proteomics 7(7), 2007
PMID: 17352426
Complete genome sequence and analysis of the multiresistant nosocomial pathogen Corynebacterium jeikeium K411, a lipid-requiring bacterium of the human skin flora.
Tauch A, Kaiser O, Hain T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I, Chakraborty T, Kalinowski J, Meyer F, Rupp O, Schneiker S, Viehoever P, Puhler A., J. Bacteriol. 187(13), 2005
PMID: 15968079
Production of malodorous steroids from androsta-5,16-dienes and androsta-4,16-dienes by Corynebacteria and other human axillary bacteria.
Decreau RA, Marson CM, Smith KE, Behan JM., J. Steroid Biochem. Mol. Biol. 87(4-5), 2003
PMID: 14698214
Microbial pathways leading to steroidal malodour in the axilla.
Austin C, Ellis J., J. Steroid Biochem. Mol. Biol. 87(1), 2003
PMID: 14630096
Microbiological transformation of steroids-XI : the action of corynebacterium simplex on non-corticoid steroid substrates
Charney, Tetrahedron 18(), 1962
Functional metagenomics for enzyme discovery: challenges to efficient screening.
Uchiyama T, Miyazaki K., Curr. Opin. Biotechnol. 20(6), 2009
PMID: 19850467
Recent progress and new challenges in metagenomics for biotechnology
Chistoserdova L., Biotechnol. Lett. 32(10), 2010
PMID: IND44425864
Analysis of characteristic odors from human male axillae.
Zeng XN, Leyden JJ, Lawley HJ, Sawano K, Nohara I, Preti G., J. Chem. Ecol. 17(7), 1991
PMID: 24257805
Families of zinc metalloproteases.
Hooper NM., FEBS Lett. 354(1), 1994
PMID: 7957888
Evolutionary families of metallopeptidases.
Rawlings ND, Barrett AJ., Meth. Enzymol. 248(), 1995
PMID: 7674922
Novel bifunctional hyperthermostable carboxypeptidase/aminoacylase from Pyrococcus horikoshii OT3.
Ishikawa K, Ishida H, Matsui I, Kawarabayasi Y, Kikuchi H., Appl. Environ. Microbiol. 67(2), 2001
PMID: 11157230
A specific bacterial aminoacylase cleaves odorant precursors secreted in the human axilla.
Natsch A, Gfeller H, Gygax P, Schmid J, Acuna G., J. Biol. Chem. 278(8), 2002
PMID: 12468539
A functional ABCC11 allele is essential in the biochemical formation of human axillary odor.
Martin A, Saathoff M, Kuhn F, Max H, Terstegen L, Natsch A., J. Invest. Dermatol. 130(2), 2009
PMID: 19710689
A SNP in the ABCC11 gene is the determinant of human earwax type.
Yoshiura K, Kinoshita A, Ishida T, Ninokata A, Ishikawa T, Kaname T, Bannai M, Tokunaga K, Sonoda S, Komaki R, Ihara M, Saenko VA, Alipov GK, Sekine I, Komatsu K, Takahashi H, Nakashima M, Sosonkina N, Mapendano CK, Ghadami M, Nomura M, Liang DS, Miwa N, Kim DK, Garidkhuu A, Natsume N, Ohta T, Tomita H, Kaneko A, Kikuchi M, Russomando G, Hirayama K, Ishibashi M, Takahashi A, Saitou N, Murray JC, Saito S, Nakamura Y, Niikawa N., Nat. Genet. 38(3), 2006
PMID: 16444273
The physiology of the apocrine (ceruminous) gland of the human ear canal.
SHELLEY WB, PERRY ET., J. Invest. Dermatol. 26(1), 1956
PMID: 13295634
Impact odorants of different young white wines from the Canary Islands.
Lopez R, Ortin N, Perez-Trujillo JP, Cacho J, Ferreira V., J. Agric. Food Chem. 51(11), 2003
PMID: 12744677
Role of certain volatile thiols in the bouquet of aged champagne wines.
Tominaga T, Guimbertau G, Dubourdieu D., J. Agric. Food Chem. 51(4), 2003
PMID: 12568565
The amino acids and other ampholytes of urine.
WESTALL RG., Biochem. J. 52(4), 1952
PMID: 13018293
Identification of new odoriferous compounds in human axillary sweat.
Hasegawa Y, Yabuki M, Matsukane M., Chem. Biodivers. 1(12), 2004
PMID: 17191839
A new type of flavor precursors in Vitis vinifera L. cv. Sauvignon blanc: S-cysteine conjugates.
Tominaga T, Peyrot des Gachons C, Dubourdieu D., J. Agric. Food Chem. 46(12), 1998
PMID: IND21998099
Identification of the precursor of (S)-3-methyl-3-sulfanylhexan-1-ol, the sulfury malodour of human axilla sweat.
Starkenmann C, Niclass Y, Troccaz M, Clark AJ., Chem. Biodivers. 2(6), 2005
PMID: 17192014
Identification of McbR as transcription regulator of aecD and genes involved in methionine biosynthesis in Corynebacterium jeikeium K411
Brune, J. Biotechnol. 151(), 2010
Perspectives on axillary odor
Labows, J. Soc. Cosmet. Chem. 33(), 1982
Skin lipids: their biochemical uniqueness.
Nicolaides N., Science 186(4158), 1974
PMID: 4607408
The Arabidopsis acyl-CoA oxidase gene family.
Eastmond PJ, Hooks M, Graham IA., Biochem. Soc. Trans. 28(6), 2000
PMID: 11171196
EDGAR: a software framework for the comparative analysis of prokaryotic genomes.
Blom J, Albaum SP, Doppmeier D, Puhler A, Vorholter FJ, Zakrzewski M, Goesmann A., BMC Bioinformatics 10(), 2009
PMID: 19457249
Gene context analysis in the Integrated Microbial Genomes (IMG) data management system.
Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC., PLoS ONE 4(11), 2009
PMID: 19956731
The Pks13/FadD32 crosstalk for the biosynthesis of mycolic acids in Mycobacterium tuberculosis.
Gavalda S, Leger M, van der Rest B, Stella A, Bardou F, Montrozier H, Chalut C, Burlet-Schiltz O, Marrakchi H, Daffe M, Quemard A., J. Biol. Chem. 284(29), 2009
PMID: 19436070
Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids.
Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, Gartemann KH, Arnold W, Blom J, Brinkrolf K, Brune I, Gotker S, Weisshaar B, Goesmann A, Droge M, Puhler A., J. Biotechnol. 136(1-2), 2008
PMID: 18430482

Clark, 1996
The lifestyle of Corynebacterium urealyticum derived from its complete genome sequence established by pyrosequencing.
Tauch A, Trost E, Tilker A, Ludewig U, Schneiker S, Goesmann A, Arnold W, Bekel T, Brinkrolf K, Brune I, Gotker S, Kalinowski J, Kamp PB, Lobo FP, Viehoever P, Weisshaar B, Soriano F, Droge M, Puhler A., J. Biotechnol. 136(1-2), 2008
PMID: 18367281
Isolations of Corynebacterium kroppenstedtii from a breast abscess.
Riegel P, Liegeois P, Chenard MP, Mathelin C, Monteil H., Int. J. Med. Microbiol. 294(6), 2004
PMID: 15595392
Two functional FAS-I type fatty acid synthases in Corynebacterium glutamicum.
Radmacher E, Alderwick LJ, Besra GS, Brown AK, Gibson KJ, Sahm H, Eggeling L., Microbiology (Reading, Engl.) 151(Pt 7), 2005
PMID: 16000732
The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function.
Goulding CW, Bowers PM, Segelke B, Lekin T, Kim CY, Terwilliger TC, Eisenberg D., J. Mol. Biol. 365(2), 2006
PMID: 17064730
Glutathione transferases.
Hayes JD, Flanagan JU, Jowsey IR., Annu. Rev. Pharmacol. Toxicol. 45(), 2005
PMID: 15822171
Localization of steroid hormone receptors in the apocrine sweat glands of the human axilla.
Beier K, Ginez I, Schaller H., Histochem. Cell Biol. 123(1), 2004
PMID: 15609040
Earwax, osmidrosis, and breas cancer: why does one SNP (538G>A) in the human ABC transporter ABCC11 gene determine earwax type?
Toyoda, J. FASEB. 23(), 2009
A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms.
Portevin D, De Sousa-D'Auria C, Houssin C, Grimaldi C, Chami M, Daffe M, Guilhot C., Proc. Natl. Acad. Sci. U.S.A. 101(1), 2003
PMID: 14695899
The reductase that catalyzes mycolic motif synthesis is required for efficient attachment of mycolic acids to arabinogalactan.
Lea-Smith DJ, Pyke JS, Tull D, McConville MJ, Coppel RL, Crellin PK., J. Biol. Chem. 282(15), 2007
PMID: 17308303

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 21790661
PubMed | Europe PMC

Suchen in

Google Scholar