Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion

Ungermann C, Fischer von Mollard G, Jensen ON, Margolis N, Stevens TH, Wickner W (1999)
JOURNAL OF CELL BIOLOGY 145(7): 1435-1442.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Ungermann, C; Fischer von Mollard, GabrieleUniBi ; Jensen, ON; Margolis, N; Stevens, TH; Wickner, W
Abstract / Bemerkung
Vacuole SNAREs, including the t-SNAREs Vam3p and Vam7p and the V-SNARE Nyv1p, are found in a multisubunit ``cis'' complex on isolated organelles. We now identify the v-SNAREs Vti1p and Ykt6p by mass spectrometry as additional components of the immunoisolated vacuolar SNARE complex. Immunodepletion of detergent extracts with anti-Vti1p removes all the Ykt6p that is in a complex with Vam3p, immunodepletion with anti-Ykt6p removes all the Vti1p that is complexed with Vam3p, and immunodepletion with anti-Nyv1p removes all the Ykt6p in complex with other SNAREs, demonstrating that they are all together in the same cis multi-SNARE complex. After priming, which disassembles the cis-SNARE complex, antibodies to any of the five SNARE proteins still inhibit the fusion assay until the docking stage is completed, suggesting that each SNARE plays a role in docking. Furthermore, vti1 temperature-sensitive alleles cause a synthetic fusion-defective phenotype in our reaction. Our data show that vacuole-vacuole fusion requires a cis-SNARE complex of five SNAREs, the t-SNAREs Vam3p and Vam7p and the v-SNAREs Nyv1p, Vti1p, and Ykt6p.
Page URI


Ungermann C, Fischer von Mollard G, Jensen ON, Margolis N, Stevens TH, Wickner W. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. JOURNAL OF CELL BIOLOGY. 1999;145(7):1435-1442.
Ungermann, C., Fischer von Mollard, G., Jensen, O. N., Margolis, N., Stevens, T. H., & Wickner, W. (1999). Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. JOURNAL OF CELL BIOLOGY, 145(7), 1435-1442.
Ungermann, C, Fischer von Mollard, Gabriele, Jensen, ON, Margolis, N, Stevens, TH, and Wickner, W. 1999. “Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion”. JOURNAL OF CELL BIOLOGY 145 (7): 1435-1442.
Ungermann, C., Fischer von Mollard, G., Jensen, O. N., Margolis, N., Stevens, T. H., and Wickner, W. (1999). Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. JOURNAL OF CELL BIOLOGY 145, 1435-1442.
Ungermann, C., et al., 1999. Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. JOURNAL OF CELL BIOLOGY, 145(7), p 1435-1442.
C. Ungermann, et al., “Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion”, JOURNAL OF CELL BIOLOGY, vol. 145, 1999, pp. 1435-1442.
Ungermann, C., Fischer von Mollard, G., Jensen, O.N., Margolis, N., Stevens, T.H., Wickner, W.: Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion. JOURNAL OF CELL BIOLOGY. 145, 1435-1442 (1999).
Ungermann, C, Fischer von Mollard, Gabriele, Jensen, ON, Margolis, N, Stevens, TH, and Wickner, W. “Three v-SNAREs and two t-SNAREs, present in a pentameric cis-SNARE complex on isolated vacuoles, are essential for homotypic fusion”. JOURNAL OF CELL BIOLOGY 145.7 (1999): 1435-1442.

98 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Molecular mechanism to target the endosomal Mon1-Ccz1 GEF complex to the pre-autophagosomal structure.
Gao J, Langemeyer L, Kümmel D, Reggiori F, Ungermann C., Elife 7(), 2018
PMID: 29446751
Non-canonical role of the SNARE protein Ykt6 in autophagosome-lysosome fusion.
Takáts S, Glatz G, Szenci G, Boda A, Horváth GV, Hegedűs K, Kovács AL, Juhász G., PLoS Genet 14(4), 2018
PMID: 29694367
Autophagosomal YKT6 is required for fusion with lysosomes independently of syntaxin 17.
Matsui T, Jiang P, Nakano S, Sakamaki Y, Yamamoto H, Mizushima N., J Cell Biol 217(8), 2018
PMID: 29789439
Reconstitution reveals Ykt6 as the autophagosomal SNARE in autophagosome-vacuole fusion.
Bas L, Papinski D, Licheva M, Torggler R, Rohringer S, Schuschnig M, Kraft C., J Cell Biol 217(10), 2018
PMID: 30097514
Organelle acidification negatively regulates vacuole membrane fusion in vivo.
Desfougères Y, Vavassori S, Rompf M, Gerasimaite R, Mayer A., Sci Rep 6(), 2016
PMID: 27363625
Functional homologies in vesicle tethering.
Kuhlee A, Raunser S, Ungermann C., FEBS Lett 589(19 pt a), 2015
PMID: 26072291
Dynamic association of the PI3P-interacting Mon1-Ccz1 GEF with vacuoles is controlled through its phosphorylation by the type 1 casein kinase Yck3.
Lawrence G, Brown CC, Flood BA, Karunakaran S, Cabrera M, Nordmann M, Ungermann C, Fratti RA., Mol Biol Cell 25(10), 2014
PMID: 24623720
Dynamin-SNARE interactions control trans-SNARE formation in intracellular membrane fusion.
Alpadi K, Kulkarni A, Namjoshi S, Srinivasan S, Sippel KH, Ayscough K, Zieger M, Schmidt A, Mayer A, Evangelista M, Quiocho FA, Peters C., Nat Commun 4(), 2013
PMID: 23591871
Distinct contributions of vacuolar Qabc- and R-SNARE proteins to membrane fusion specificity.
Izawa R, Onoue T, Furukawa N, Mima J., J Biol Chem 287(5), 2012
PMID: 22174414
The SMS domain of Trs23p is responsible for the in vitro appearance of the TRAPP I complex in Saccharomyces cerevisiae.
Brunet S, Noueihed B, Shahrzad N, Saint-Dic D, Hasaj B, Guan TL, Moores A, Barlowe C, Sacher M., Cell Logist 2(1), 2012
PMID: 22645708
Sequential analysis of trans-SNARE formation in intracellular membrane fusion.
Alpadi K, Kulkarni A, Comte V, Reinhardt M, Schmidt A, Namjoshi S, Mayer A, Peters C., PLoS Biol 10(1), 2012
PMID: 22272185
A tethering complex dimer catalyzes trans-SNARE complex formation in intracellular membrane fusion.
Kulkarni A, Alpadi K, Namjoshi S, Peters C., Bioarchitecture 2(2), 2012
PMID: 22754631
Distinct initial SNARE configurations underlying the diversity of exocytosis.
Kasai H, Takahashi N, Tokumaru H., Physiol Rev 92(4), 2012
PMID: 23073634
Sec1/Munc18 protein Vps33 binds to SNARE domains and the quaternary SNARE complex.
Lobingier BT, Merz AJ., Mol Biol Cell 23(23), 2012
PMID: 23051737
Identification of Drosophila gene products required for phagocytosis of Leishmania donovani.
Peltan A, Briggs L, Matthews G, Sweeney ST, Smith DF., PLoS One 7(12), 2012
PMID: 23272175
Evidence for prenylation-dependent targeting of a Ykt6 SNARE in Plasmodium falciparum.
Ayong L, DaSilva T, Mauser J, Allen CM, Chakrabarti D., Mol Biochem Parasitol 175(2), 2011
PMID: 21075148
Genome-wide identification of Phytophthora sojae SNARE genes and functional characterization of the conserved SNARE PsYKT6.
Zhao W, Dong S, Ye W, Hua C, Meijer HJ, Dou X, Govers F, Wang Y., Fungal Genet Biol 48(3), 2011
PMID: 21109013
SNARE proteins are required for macroautophagy.
Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, Yen WL, Griffith J, Nag S, Wang K, Moss T, Baba M, McNew JA, Jiang X, Reggiori F, Melia TJ, Klionsky DJ., Cell 146(2), 2011
PMID: 21784249
Lipid-Induced conformational switch controls fusion activity of longin domain SNARE Ykt6.
Wen W, Yu J, Pan L, Wei Z, Weng J, Wang W, Ong YS, Tran TH, Hong W, Zhang M., Mol Cell 37(3), 2010
PMID: 20159557
The late stage of autophagy: cellular events and molecular regulation.
Tong J, Yan X, Yu L., Protein Cell 1(10), 2010
PMID: 21204017
Farnesylation of the SNARE protein Ykt6 increases its stability and helical folding.
Pylypenko O, Schönichen A, Ludwig D, Ungermann C, Goody RS, Rak A, Geyer M., J Mol Biol 377(5), 2008
PMID: 18329045
Depalmitoylation of Ykt6 prevents its entry into the multivesicular body pathway.
Meiringer CT, Auffarth K, Hou H, Ungermann C., Traffic 9(9), 2008
PMID: 18541004
Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson.
Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, Winderickx J., Biochim Biophys Acta 1783(10), 2008
PMID: 18634833
A SNARE complex unique to seed plants is required for protein storage vacuole biogenesis and seed development of Arabidopsis thaliana.
Ebine K, Okatani Y, Uemura T, Goh T, Shoda K, Niihama M, Morita MT, Spitzer C, Otegui MS, Nakano A, Ueda T., Plant Cell 20(11), 2008
PMID: 18984676
Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p.
Stroupe C, Collins KM, Fratti RA, Wickner W., EMBO J 25(8), 2006
PMID: 16601699
Setting SNAREs in a different wood.
Sutter JU, Campanoni P, Blatt MR, Paneque M., Traffic 7(6), 2006
PMID: 16683913
Probing protein palmitoylation at the yeast vacuole.
Meiringer CT, Ungermann C., Methods 40(2), 2006
PMID: 17012029
Reversible, cooperative reactions of yeast vacuole docking.
Jun Y, Thorngren N, Starai VJ, Fratti RA, Collins K, Wickner W., EMBO J 25(22), 2006
PMID: 17082764
The SNARE Ykt6 is released from yeast vacuoles during an early stage of fusion.
Dietrich LE, Peplowska K, LaGrassa TJ, Hou H, Rohde J, Ungermann C., EMBO Rep 6(3), 2005
PMID: 15723044
Hansenula polymorpha Vam7p is required for macropexophagy.
Stevens P, Monastyrska I, Leão-Helder AN, van der Klei IJ, Veenhuis M, Kiel JA., FEMS Yeast Res 5(11), 2005
PMID: 16269391
Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion.
Collins KM, Thorngren NL, Fratti RA, Wickner WT., EMBO J 24(10), 2005
PMID: 15889152
The vacuolar DHHC-CRD protein Pfa3p is a protein acyltransferase for Vac8p.
Smotrys JE, Schoenfish MJ, Stutz MA, Linder ME., J Cell Biol 170(7), 2005
PMID: 16186255
The SNARE Ykt6 mediates protein palmitoylation during an early stage of homotypic vacuole fusion.
Dietrich LE, Gurezka R, Veit M, Ungermann C., EMBO J 23(1), 2004
PMID: 14685280
Trans-SNARE interactions elicit Ca2+ efflux from the yeast vacuole lumen.
Merz AJ, Wickner WT., J Cell Biol 164(2), 2004
PMID: 14734531
Countercurrent distribution of two distinct SNARE complexes mediating transport within the Golgi stack.
Volchuk A, Ravazzola M, Perrelet A, Eng WS, Di Liberto M, Varlamov O, Fukasawa M, Engel T, Söllner TH, Rothman JE, Orci L., Mol Biol Cell 15(4), 2004
PMID: 14742712
Spatio-temporal organization of Vam6P and SNAP on mouse spermatozoa and their involvement in sperm-zona pellucida interactions.
Brahmaraju M, Shoeb M, Laloraya M, Kumar PG., Biochem Biophys Res Commun 318(1), 2004
PMID: 15110766
A soluble SNARE drives rapid docking, bypassing ATP and Sec17/18p for vacuole fusion.
Thorngren N, Collins KM, Fratti RA, Wickner W, Merz AJ., EMBO J 23(14), 2004
PMID: 15241469
Mutual control of membrane fission and fusion proteins.
Peters C, Baars TL, Bühler S, Mayer A., Cell 119(5), 2004
PMID: 15550248
Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion.
Wang L, Merz AJ, Collins KM, Wickner W., J Cell Biol 160(3), 2003
PMID: 12566429
Mammalian ykt6 is a neuronal SNARE targeted to a specialized compartment by its profilin-like amino terminal domain.
Hasegawa H, Zinsser S, Rhee Y, Vik-Mo EO, Davanger S, Hay JC., Mol Biol Cell 14(2), 2003
PMID: 12589064
A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism.
Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M., Proc Natl Acad Sci U S A 100(14), 2003
PMID: 12815100
Vacuole membrane fusion: V0 functions after trans-SNARE pairing and is coupled to the Ca2+-releasing channel.
Bayer MJ, Reese C, Buhler S, Peters C, Mayer A., J Cell Biol 162(2), 2003
PMID: 12876274
A SNARE required for retrograde transport to the endoplasmic reticulum.
Burri L, Varlamov O, Doege CA, Hofmann K, Beilharz T, Rothman JE, Söllner TH, Lithgow T., Proc Natl Acad Sci U S A 100(17), 2003
PMID: 12893879
SNARE regulators: matchmakers and matchbreakers.
Gerst JE., Biochim Biophys Acta 1641(2-3), 2003
PMID: 12914951
Identification of a SNARE protein required for vacuolar protein transport in Schizosaccharomyces pombe.
Takegawa K, Hosomi A, Iwaki T, Fujita Y, Morita T, Tanaka N., Biochem Biophys Res Commun 311(1), 2003
PMID: 14575697
Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage.
Wang CW, Stromhaug PE, Kauffman EJ, Weisman LS, Klionsky DJ., J Cell Biol 163(5), 2003
PMID: 14662743
Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform.
Mallard F, Tang BL, Galli T, Tenza D, Saint-Pol A, Yue X, Antony C, Hong W, Goud B, Johannes L., J Cell Biol 156(4), 2002
PMID: 11839770
Yeast vacuoles and membrane fusion pathways.
Wickner W., EMBO J 21(6), 2002
PMID: 11889030
ARF-GAP-mediated interaction between the ER-Golgi v-SNAREs and the COPI coat.
Rein U, Andag U, Duden R, Schmitt HD, Spang A., J Cell Biol 157(3), 2002
PMID: 11970962
Structure of proteins involved in synaptic vesicle fusion in neurons.
Brunger AT., Annu Rev Biophys Biomol Struct 30(), 2001
PMID: 11340056
Vac8p release from the SNARE complex and its palmitoylation are coupled and essential for vacuole fusion.
Veit M, Laage R, Dietrich L, Wang L, Ungermann C., EMBO J 20(12), 2001
PMID: 11406591
Human Vam6p promotes lysosome clustering and fusion in vivo.
Caplan S, Hartnell LM, Aguilar RC, Naslavsky N, Bonifacino JS., J Cell Biol 154(1), 2001
PMID: 11448994
Cdc42p functions at the docking stage of yeast vacuole membrane fusion.
Müller O, Johnson DI, Mayer A., EMBO J 20(20), 2001
PMID: 11598009
Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms.
Wickner W, Haas A., Annu Rev Biochem 69(), 2000
PMID: 10966459
SNAREs contribute to the specificity of membrane fusion.
Scales SJ, Chen YA, Yoo BY, Patel SM, Doung YC, Scheller RH., Neuron 26(2), 2000
PMID: 10839363
A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion.
Seals DF, Eitzen G, Margolis N, Wickner WT, Price A., Proc Natl Acad Sci U S A 97(17), 2000
PMID: 10944212
Membrane tethering and fusion in the secretory and endocytic pathways.
Waters MG, Hughson FM., Traffic 1(8), 2000
PMID: 11208146
Syntaxin 7 is localized to late endosome compartments, associates with Vamp 8, and Is required for late endosome-lysosome fusion.
Mullock BM, Smith CW, Ihrke G, Bright NA, Lindsay M, Parkinson EJ, Brooks DA, Parton RG, James DE, Luzio JP, Piper RC., Mol Biol Cell 11(9), 2000
PMID: 10982406
Functional architecture of an intracellular membrane t-SNARE.
Fukuda R, McNew JA, Weber T, Parlati F, Engel T, Nickel W, Rothman JE, Söllner TH., Nature 407(6801), 2000
PMID: 11001059
Functional implications of protein isoprenylation in plants.
Crowell DN., Prog Lipid Res 39(5), 2000
PMID: 11082505
Polar transmembrane domains target proteins to the interior of the yeast vacuole.
Reggiori F, Black MW, Pelham HR., Mol Biol Cell 11(11), 2000
PMID: 11071903
Exocytosis requires asymmetry in the central layer of the SNARE complex.
Ossig R, Schmitt HD, de Groot B, Riedel D, Keränen S, Ronne H, Grubmüller H, Jahn R., EMBO J 19(22), 2000
PMID: 11080147
A SNARE complex mediating fusion of late endosomes defines conserved properties of SNARE structure and function.
Antonin W, Holroyd C, Fasshauer D, Pabst S, Von Mollard GF, Jahn R., EMBO J 19(23), 2000
PMID: 11101518
The yeast endocytic membrane transport system.
Munn AL., Microsc Res Tech 51(6), 2000
PMID: 11169857
The ins and outs of yeast vacuole trafficking.
Götte M, Lazar T., Protoplasma 209(1-2), 1999
PMID: 18987790
Vacuole acidification is required for trans-SNARE pairing, LMA1 release, and homotypic fusion.
Ungermann C, Wickner W, Xu Z., Proc Natl Acad Sci U S A 96(20), 1999
PMID: 10500153
Sea urchin egg preparations as systems for the study of calcium-triggered exocytosis.
Zimmerberg J, Coorssen JR, Vogel SS, Blank PS., J Physiol 520 Pt 1(), 1999
PMID: 10517796

62 References

Daten bereitgestellt von Europe PubMed Central.

A SNARE-like protein required for traffic through the Golgi complex.
Banfield DK, Lewis MJ, Pelham HR., Nature 375(6534), 1995
PMID: 7596416
Retrograde traffic out of the yeast vacuole to the TGN occurs via the prevacuolar/endosomal compartment.
Bryant NJ, Piper RC, Weisman LS, Stevens TH., J. Cell Biol. 142(3), 1998
PMID: 9700156
A novel Sec18p/NSF-dependent complex required for Golgi-to-endosome transport in yeast.
Burd CG, Peterson M, Cowles CR, Emr SD., Mol. Biol. Cell 8(6), 1997
PMID: 9201718
The Rab5 effector EEA1 is a core component of endosome docking.
Christoforidis S, McBride HM, Burgoyne RD, Zerial M., Nature 397(6720), 1999
PMID: 10050856
In vitro reactions of vacuole inheritance in Saccharomyces cerevisiae.
Conradt B, Shaw J, Vida T, Emr S, Wickner W., J. Cell Biol. 119(6), 1992
PMID: 1334958
Biochemical and functional studies of cortical vesicle fusion: the SNARE complex and Ca2+ sensitivity.
Coorssen JR, Blank PS, Tahara M, Zimmerberg J., J. Cell Biol. 143(7), 1998
PMID: 9864359
The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole.
Cowles CR, Odorizzi G, Payne GS, Emr SD., Cell 91(1), 1997
PMID: 9335339
Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs.
Fasshauer D, Sutton RB, Brunger AT, Jahn R., Proc. Natl. Acad. Sci. U.S.A. 95(26), 1998
PMID: 9861047
Vesicle fusion from yeast to man.
Ferro-Novick S, Jahn R., Nature 370(6486), 1994
PMID: 8028665
A quantitative assay to measure homotypic vacuole fusion in vitro
Haas A., 1995
G-protein ligands inhibit in vitro reactions of vacuole inheritance.
Haas A, Conradt B, Wickner W., J. Cell Biol. 126(1), 1994
PMID: 8027189

SNAREs and NSF in targeted membrane fusion.
Hay JC, Scheller RH., Curr. Opin. Cell Biol. 9(4), 1997
PMID: 9261050
Synaptic vesicle membrane fusion complex: action of clostridial neurotoxins on assembly.
Hayashi T, McMahon H, Yamasaki S, Binz T, Hata Y, Sudhof TC, Niemann H., EMBO J. 13(21), 1994
PMID: 7957071
Disassembly of the reconstituted synaptic vesicle membrane fusion complex in vitro.
Hayashi T, Yamasaki S, Nauenburg S, Binz T, Niemann H., EMBO J. 14(10), 1995
PMID: 7774590
Two syntaxin homologues in the TGN/endosomal system of yeast.
Holthuis JC, Nichols BJ, Dhruvakumar S, Pelham HR., EMBO J. 17(1), 1998
PMID: 9427746
Delayed extraction improves specificity in database searches by matrix-assisted laser desorption/ionization peptide maps.
Jensen ON, Podtelejnikov A, Mann M., Rapid Commun. Mass Spectrom. 10(11), 1996
PMID: 8805846

Golgi division and membrane traffic.
Lowe M, Nakamura N, Warren G., Trends Cell Biol. 8(1), 1998
PMID: 9695807
Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic.
Lupashin VV, Pokrovskaya ID, McNew JA, Waters MG., Mol. Biol. Cell 8(12), 1997
PMID: 9398683
Ykt6p, a prenylated SNARE essential for endoplasmic reticulum-Golgi transport.
McNew JA, Sogaard M, Lampen NM, Machida S, Ye RR, Lacomis L, Tempst P, Rothman JE, Sollner TH., J. Biol. Chem. 272(28), 1997
PMID: 9211930
Involvement of the endosomal autoantigen EEA1 in homotypic fusion of early endosomes.
Mills IG, Jones AT, Clague MJ., Curr. Biol. 8(15), 1998
PMID: 9705936
Homotypic vacuolar fusion mediated by t- and v-SNAREs.
Nichols BJ, Ungermann C, Pelham HR, Wickner WT, Haas A., Nature 387(6629), 1997
PMID: 9144293
The diversity of Rab proteins in vesicle transport.
Novick P, Zerial M., Curr. Opin. Cell Biol. 9(4), 1997
PMID: 9261061
Transport vesicle docking: SNARE and associates
Pfeffer SR., 1996
The synaptic SNARE complex is a parallel four-stranded helical bundle.
Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK., Nat. Struct. Biol. 5(9), 1998
PMID: 9731768
Mechanisms of intracellular protein transport.
Rothman JE., Nature 372(6501), 1994
PMID: 7969419
Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels.
Shevchenko A, Wilm M, Vorm O, Mann M., Anal. Chem. 68(5), 1996
PMID: 8779443
EEA1 links PI(3)K function to Rab5 regulation of endosome fusion.
Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H., Nature 394(6692), 1998
PMID: 9697774
A rab protein is required for the assembly of SNARE complexes in the docking of transport vesicles.
Sogaard M, Tani K, Ye RR, Geromanos S, Tempst P, Kirchhausen T, Rothman JE, Sollner T., Cell 78(6), 1994
PMID: 7923363
SNAP receptors implicated in vesicle targeting and fusion.
Sollner T, Whiteheart SW, Brunner M, Erdjument-Bromage H, Geromanos S, Tempst P, Rothman JE., Nature 362(6418), 1993
PMID: 8455717
Reconstitution of retrograde transport from the Golgi to the ER in vitro.
Spang A, Schekman R., J. Cell Biol. 143(3), 1998
PMID: 9813082
Rabaptin-5 is a direct effector of the small GTPase Rab5 in endocytic membrane fusion.
Stenmark H, Vitale G, Ullrich O, Zerial M., Cell 83(3), 1995
PMID: 8521472
Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution.
Sutton RB, Fasshauer D, Jahn R, Brunger AT., Nature 395(6700), 1998
PMID: 9759724
Calcium can disrupt the SNARE protein complex on sea urchin egg secretory vesicles without irreversibly blocking fusion.
Tahara M, Coorssen JR, Timmers K, Blank PS, Whalley T, Scheller R, Zimmerberg J., J. Biol. Chem. 273(50), 1998
PMID: 9837952
Defining the functions of trans-SNARE pairs.
Ungermann C, Sato K, Wickner W., Nature 396(6711), 1998
PMID: 9859990

SNAREpins: minimal machinery for membrane fusion.
Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE., Cell 92(6), 1998
PMID: 9529252
A conserved domain is present in different families of vesicular fusion proteins: a new superfamily.
Weimbs T, Low SH, Chapin SJ, Mostov KE, Bucher P, Hofmann K., Proc. Natl. Acad. Sci. U.S.A. 94(7), 1997
PMID: 9096343
Membrane fusion. SNARE the rod, coil the complex.
Weis WI, Scheller RH., Nature 395(6700), 1998
PMID: 9759719

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

PMID: 10385523
PubMed | Europe PMC

Suchen in

Google Scholar