Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer

Kianianmomeni A, Stehfest K, Nematollahi G, Hegemann P, Hallmann A (2009)
Plant Physiol. 151(1): 347-366.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Abstract / Bemerkung
Channelrhodopsins are light-gated ion channels involved in the photoresponses of microalgae. Here, we describe the characterization of two channelrhodopsins, Volvox channelrhodopsin-1 (VChR1) and VChR2, from the multicellular green alga Volvox carteri. Both are encoded by nuclear single copy genes and are highly expressed in the small biflagellated somatic cells but not in the asexual reproductive cells (gonidia). Expression of both VChRs increases after cell cleavage and peaks after completion of embryogenesis, when the biosynthesis of the extracellular matrix begins. Likewise, expression of both transcripts increases after addition of the sex-inducer protein, but VChR2 is induced much more than VChR1. The expression of VChR1 is specifically promoted by extended dark periods, and heat stress reduces predominantly VChR1 expression. Expression of both VChRs increased under low light conditions, whereas cold stress and wounding reduced expression. Both VChRs were spectroscopically studied in their purified recombinant forms. VChR2 is similar to the ChR2 counterpart from Chlamydomonas reinhardtii with respect to its absorption maximum ( 460 nm) and photocycle dynamics. In contrast, VChR1 absorbs maximally at 540 nm at low pH (D540), shifting to 500 nm at high pH (D500). Flash photolysis experiments showed that after light excitation, the D540 dark state bleaches and at least two photoproducts, P600 and P500, are sequentially populated during the photocycle. We hypothesize that VChR2 is a general photoreceptor that is responsible for the avoidance of blue light and might play a key role in sexual development, whereas VChR1 is the main phototaxis photoreceptor under vegetative conditions, as it is more specifically adapted to environmental conditions and the developmental stages of Volvox.
Erscheinungsjahr
2009
Zeitschriftentitel
Plant Physiol.
Band
151
Ausgabe
1
Seite(n)
347-366
ISSN
0032-0889
eISSN
1532-2548
Page URI
https://pub.uni-bielefeld.de/record/2372803

Zitieren

Kianianmomeni A, Stehfest K, Nematollahi G, Hegemann P, Hallmann A. Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer. Plant Physiol. 2009;151(1):347-366.
Kianianmomeni, A., Stehfest, K., Nematollahi, G., Hegemann, P., & Hallmann, A. (2009). Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer. Plant Physiol., 151(1), 347-366. https://doi.org/10.1104/pp.109.143297
Kianianmomeni, Arash, Stehfest, K., Nematollahi, Ghazaleh, Hegemann, P., and Hallmann, Armin. 2009. “Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer”. Plant Physiol. 151 (1): 347-366.
Kianianmomeni, A., Stehfest, K., Nematollahi, G., Hegemann, P., and Hallmann, A. (2009). Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer. Plant Physiol. 151, 347-366.
Kianianmomeni, A., et al., 2009. Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer. Plant Physiol., 151(1), p 347-366.
A. Kianianmomeni, et al., “Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer”, Plant Physiol., vol. 151, 2009, pp. 347-366.
Kianianmomeni, A., Stehfest, K., Nematollahi, G., Hegemann, P., Hallmann, A.: Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer. Plant Physiol. 151, 347-366 (2009).
Kianianmomeni, Arash, Stehfest, K., Nematollahi, Ghazaleh, Hegemann, P., and Hallmann, Armin. “Channelrhodopsins of Volvox carteri are photochromic proteins that are specifically expressed in somatic cells under control of light, temperature and the sex-inducer”. Plant Physiol. 151.1 (2009): 347-366.

24 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Two-component cyclase opsins of green algae are ATP-dependent and light-inhibited guanylyl cyclases.
Tian Y, Gao S, von der Heyde EL, Hallmann A, Nagel G., BMC Biol 16(1), 2018
PMID: 30522480
Structure-guided SCHEMA recombination generates diverse chimeric channelrhodopsins.
Bedbrook CN, Rice AJ, Yang KK, Ding X, Chen S, LeProust EM, Gradinaru V, Arnold FH., Proc Natl Acad Sci U S A 114(13), 2017
PMID: 28283661
The regulatory mechanism of ion permeation through a channelrhodopsin derived from Mesostigma viride (MvChR1).
Watanabe S, Ishizuka T, Hososhima S, Zamani A, Hoque MR, Yawo H., Photochem Photobiol Sci 15(3), 2016
PMID: 26853505
Biophysics of Channelrhodopsin.
Schneider F, Grimm C, Hegemann P., Annu Rev Biophys 44(), 2015
PMID: 26098512
Microbial rhodopsins of Halorubrum species isolated from Ejinoor salt lake in Inner Mongolia of China.
Chaoluomeng, Dai G, Kikukawa T, Ihara K, Iwasa T., Photochem Photobiol Sci 14(11), 2015
PMID: 26328780
Algal photoreceptors: in vivo functions and potential applications.
Kianianmomeni A, Hallmann A., Planta 239(1), 2014
PMID: 24081482
Photons and neurons.
Richter CP, Tan X., Hear Res 311(), 2014
PMID: 24709273
Involvement of glutamate 97 in ion influx through photo-activated channelrhodopsin-2.
Tanimoto S, Sugiyama Y, Takahashi T, Ishizuka T, Yawo H., Neurosci Res 75(1), 2013
PMID: 22664343
Intramolecular proton transfer in channelrhodopsins.
Sineshchekov OA, Govorunova EG, Wang J, Li H, Spudich JL., Biophys J 104(4), 2013
PMID: 23442959
Optogenetic manipulation of neural and non-neural functions.
Yawo H, Asano T, Sakai S, Ishizuka T., Dev Growth Differ 55(4), 2013
PMID: 23550617
Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
Govorunova EG, Sineshchekov OA, Li H, Janz R, Spudich JL., J Biol Chem 288(41), 2013
PMID: 23995841
Diversity of Chlamydomonas channelrhodopsins.
Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL., Photochem Photobiol 88(1), 2012
PMID: 22044280
Color-tuned channelrhodopsins for multiwavelength optogenetics.
Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P., J Biol Chem 287(38), 2012
PMID: 22843694
New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride.
Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL., MBio 2(3), 2011
PMID: 21693637
The microbial opsin family of optogenetic tools.
Zhang F, Vierock J, Yizhar O, Fenno LE, Tsunoda S, Kianianmomeni A, Prigge M, Berndt A, Cushman J, Polle J, Magnuson J, Hegemann P, Deisseroth K., Cell 147(7), 2011
PMID: 22196724
Evolution of the channelrhodopsin photocycle model.
Stehfest K, Hegemann P., Chemphyschem 11(6), 2010
PMID: 20349494
Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signalling.
Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C., New Phytol 187(1), 2010
PMID: 20456068

70 References

Daten bereitgestellt von Europe PubMed Central.

Volvoxrhodopsin, a light-regulated sensory photoreceptor of the spheroidal green alga Volvox carteri.
Ebnet E, Fischer M, Deininger W, Hegemann P., Plant Cell 11(8), 1999
PMID: 10449581
Structure of bacteriorhodopsin at 1.55 A resolution.
Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK., J. Mol. Biol. 291(4), 1999
PMID: 10452895
Chlamydomonas reinhardtii in the landscape of pigments.
Grossman AR, Lohr M, Im CS., Annu. Rev. Genet. 38(), 2004
PMID: 15568974
Rhodopsin-mediated photoreception in cryptophyte flagellates.
Sineshchekov OA, Govorunova EG, Jung KH, Zauner S, Maier UG, Spudich JL., Biophys. J. 89(6), 2005
PMID: 16150961
Multiple photocycles of channelrhodopsin.
Hegemann P, Ehlenbeck S, Gradmann D., Biophys. J. 89(6), 2005
PMID: 16169986
Archaeal-type rhodopsins in Chlamydomonas: model structure and intracellular localization.
Suzuki T, Yamasaki K, Fujita S, Oda K, Iseki M, Yoshida K, Watanabe M, Daiyasu H, Toh H, Asamizu E, Tabata S, Miura K, Fukuzawa H, Nakamura S, Takahashi T., Biochem. Biophys. Res. Commun. 301(3), 2003
PMID: 12565839
Genome-wide analysis of redox-regulated genes in a dinoflagellate.
Okamoto OK, Hastings JW., Gene 321(), 2003
PMID: 14636994
Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E., Proc. Natl. Acad. Sci. U.S.A. 100(24), 2003
PMID: 14615590
Chlamydomonas sensory rhodopsins A and B: cellular content and role in photophobic responses.
Govorunova EG, Jung KH, Sineshchekov OA, Spudich JL., Biophys. J. 86(4), 2004
PMID: 15041672
Control of differentiation in Volvox.
Starr RC., Symp Soc Dev Biol 29(), 1970
PMID: 4950154
Functions of a new photoreceptor membrane.
Oesterhelt D, Stoeckenius W., Proc. Natl. Acad. Sci. U.S.A. 70(10), 1973
PMID: 4517939
Photoreceptor electric potential in the phototaxis of the alga Haematococcus pluvialis.
Litvin FF, Sineshchekov OA, Sineshchekov VA., Nature 271(5644), 1978
PMID: 628427
Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium.
Takahashi T, Mochizuki Y, Kamo N, Kobatake Y., Biochem. Biophys. Res. Commun. 127(1), 1985
PMID: 3977930
LogoBar: bar graph visualization of protein logos with gaps.
Perez-Bercoff A, Koch J, Burglin TR., Bioinformatics 22(1), 2005
PMID: 16269415
Lipids and lipid metabolism in eukaryotic algae.
Guschina IA, Harwood JL., Prog. Lipid Res. 45(2), 2006
PMID: 16492482
H+ -pumping rhodopsin from the marine alga Acetabularia.
Tsunoda SP, Ewers D, Gazzarrini S, Moroni A, Gradmann D, Hegemann P., Biophys. J. 91(4), 2006
PMID: 16731558
Proteomic analysis of the eyespot of Chlamydomonas reinhardtii provides novel insights into its components and tactic movements.
Schmidt M, Gessner G, Luff M, Heiland I, Wagner V, Kaminski M, Geimer S, Eitzinger N, Reissenweber T, Voytsekh O, Fiedler M, Mittag M, Kreimer G., Plant Cell 18(8), 2006
PMID: 16798888
The multitalented microbial sensory rhodopsins.
Spudich JL., Trends Microbiol. 14(11), 2006
PMID: 17005405
Microbial rhodopsins: functional versatility and genetic mobility.
Sharma AK, Spudich JL, Doolittle WF., Trends Microbiol. 14(11), 2006
PMID: 17008099
Optogenetics. Shining new light on neural circuits.
Miller G., Science 314(5806), 2006
PMID: 17170269
Quantitative analysis of cell-type specific gene expression in the green alga Volvox carteri.
Nematollahi G, Kianianmomeni A, Hallmann A., BMC Genomics 7(), 2006
PMID: 17184518
Photoactivation of channelrhodopsin.
Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P., J. Biol. Chem. 283(3), 2007
PMID: 17993465
Algal sensory photoreceptors.
Hegemann P., Annu Rev Plant Biol 59(), 2008
PMID: 18444900
Microbial rhodopsins: scaffolds for ion pumps, channels, and sensors.
Klare JP, Chizhov I, Engelhard M., Results Probl Cell Differ 45(), 2008
PMID: 17898961
Red-shifted optogenetic excitation: a tool for fast neural control derived from Volvox carteri.
Zhang F, Prigge M, Beyriere F, Tsunoda SP, Mattis J, Yizhar O, Hegemann P, Deisseroth K., Nat. Neurosci. 11(6), 2008
PMID: 18432196
Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
Berthold P, Tsunoda SP, Ernst OP, Mages W, Gradmann D, Hegemann P., Plant Cell 20(6), 2008
PMID: 18552201
Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ., J. Biol. Chem. 283(50), 2008
PMID: 18927082
Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches.
Meyer CK, Bohme M, Ockenfels A, Gartner W, Hofmann KP, Ernst OP., J. Biol. Chem. 275(26), 2000
PMID: 10770924
The abundant retinal protein of the Chlamydomonas eye is not the photoreceptor for phototaxis and photophobic responses.
Fuhrmann M, Stahlberg A, Govorunova E, Rank S, Hegemann P., J. Cell. Sci. 114(Pt 21), 2001
PMID: 11719552
Channelrhodopsin-1: a light-gated proton channel in green algae.
Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P., Science 296(5577), 2002
PMID: 12089443
Light Antennas in phototactic algae.
Foster KW, Smyth RD., Microbiol. Rev. 44(4), 1980
PMID: 7010112
Halorhodopsin is a light-driven chloride pump.
Schobert B, Lanyi JK., J. Biol. Chem. 257(17), 1982
PMID: 7107607
Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium.
Bogomolni RA, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 79(20), 1982
PMID: 6959114
A pharaonis phoborhodopsin mutant with the same retinal binding site residues as in bacteriorhodopsin.
Shimono K, Furutani Y, Kandori H, Kamo N., Biochemistry 41(20), 2002
PMID: 12009914
Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas reinhardtii.
Sineshchekov OA, Jung KH, Spudich JL., Proc. Natl. Acad. Sci. U.S.A. 99(13), 2002
PMID: 12060707
Heat shock elicits production of sexual inducer in Volvox.
Kirk DL, Kirk MM., Science 231(4733), 1986
PMID: 3941891
The sexual inducer of Volvox carteri. Primary structure deduced from cDNA sequence.
Mages HW, Tschochner H, Sumper M., FEBS Lett. 234(2), 1988
PMID: 2839374
Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy.
Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH., J. Mol. Biol. 213(4), 1990
PMID: 2359127
Patterns of organellar and nuclear inheritance among progeny of two geographically isolated strains of Volvox carteri.
Adams CR, Stamer KA, Miller JK, McNally JG, Kirk MM, Kirk DL., Curr. Genet. 18(2), 1990
PMID: 1977526
Basic local alignment search tool.
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ., J. Mol. Biol. 215(3), 1990
PMID: 2231712
Structure and expression of a single actin gene in Volvox carteri.
Cresnar B, Mages W, Muller K, Salbaum JM, Schmitt R., Curr. Genet. 18(4), 1990
PMID: 2253273
Reflection confocal laser scanning microscopy of eyespots in flagellated green algae.
Kreimer G, Melkonian M., Eur. J. Cell Biol. 53(1), 1990
PMID: 2076697
In vitro identification of rhodopsin in the green alga Chlamydomonas.
Beckmann M, Hegemann P., Biochemistry 30(15), 1991
PMID: 2015225
Chlamyrhodopsin represents a new type of sensory photoreceptor.
Deininger W, Kroger P, Hegemann U, Lottspeich F, Hegemann P., EMBO J. 14(23), 1995
PMID: 8846778
Control of phobic behavioral responses by rhodopsin-induced photocurrents in Chlamydomonas.
Holland EM, Harz H, Uhl R, Hegemann P., Biophys. J. 73(3), 1997
PMID: 9284306
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19641026
PubMed | Europe PMC

Suchen in

Google Scholar