Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes

Lieu DK, Liu J, Siu CW, McNerney GP, Abu-Khalil A, Huser T (2009)
Stem Cells Dev. 18(10): 1493-1500.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Lieu, D.K.; Liu, J.; Siu, C.W.; McNerney, G.P.; Abu-Khalil, A.; Huser, ThomasUniBi
Erscheinungsjahr
2009
Zeitschriftentitel
Stem Cells Dev.
Band
18
Ausgabe
10
Seite(n)
1493-1500
ISSN
1547-3287
eISSN
1557-8534
Page URI
https://pub.uni-bielefeld.de/record/2352502

Zitieren

Lieu DK, Liu J, Siu CW, McNerney GP, Abu-Khalil A, Huser T. Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev. 2009;18(10):1493-1500.
Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Abu-Khalil, A., & Huser, T. (2009). Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev., 18(10), 1493-1500. https://doi.org/10.1089/scd.2009.0052
Lieu, D.K., Liu, J., Siu, C.W., McNerney, G.P., Abu-Khalil, A., and Huser, Thomas. 2009. “Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes”. Stem Cells Dev. 18 (10): 1493-1500.
Lieu, D. K., Liu, J., Siu, C. W., McNerney, G. P., Abu-Khalil, A., and Huser, T. (2009). Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev. 18, 1493-1500.
Lieu, D.K., et al., 2009. Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev., 18(10), p 1493-1500.
D.K. Lieu, et al., “Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes”, Stem Cells Dev., vol. 18, 2009, pp. 1493-1500.
Lieu, D.K., Liu, J., Siu, C.W., McNerney, G.P., Abu-Khalil, A., Huser, T.: Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes. Stem Cells Dev. 18, 1493-1500 (2009).
Lieu, D.K., Liu, J., Siu, C.W., McNerney, G.P., Abu-Khalil, A., and Huser, Thomas. “Absence of Transverse Tubules Contributes to Non-Uniform Ca2+ Wavefront in Mouse and Human Embryonic Stem Cell-Derived Cardiomyocytes”. Stem Cells Dev. 18.10 (2009): 1493-1500.

79 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development.
Karagiannis P, Takahashi K, Saito M, Yoshida Y, Okita K, Watanabe A, Inoue H, Yamashita JK, Todani M, Nakagawa M, Osawa M, Yashiro Y, Yamanaka S, Osafune K., Physiol Rev 99(1), 2019
PMID: 30328784
Novel insights into cardiomyocytes provided by atomic force microscopy.
Borin D, Pecorari I, Pena B, Sbaizero O., Semin Cell Dev Biol 73(), 2018
PMID: 28687239
Bioengineering an electro-mechanically functional miniature ventricular heart chamber from human pluripotent stem cells.
Li RA, Keung W, Cashman TJ, Backeris PC, Johnson BV, Bardot ES, Wong AOT, Chan PKW, Chan CWY, Costa KD., Biomaterials 163(), 2018
PMID: 29459321
Human-Induced Pluripotent Stem Cell Technology and Cardiomyocyte Generation: Progress and Clinical Applications.
Di Baldassarre A, Cimetta E, Bollini S, Gaggi G, Ghinassi B., Cells 7(6), 2018
PMID: 29799480
Modelling inherited cardiac disease using human induced pluripotent stem cell-derived cardiomyocytes: progress, pitfalls, and potential.
van Mil A, Balk GM, Neef K, Buikema JW, Asselbergs FW, Wu SM, Doevendans PA, Sluijter JPG., Cardiovasc Res 114(14), 2018
PMID: 30169602
Phenotypic assays for analyses of pluripotent stem cell-derived cardiomyocytes.
Pesl M, Pribyl J, Caluori G, Cmiel V, Acimovic I, Jelinkova S, Dvorak P, Starek Z, Skladal P, Rotrekl V., J Mol Recognit 30(6), 2017
PMID: 27995655
Human-Induced Pluripotent Stem Cell-Based Modeling of Cardiac Storage Disorders.
Nelson BC, Hashem SI, Adler ED., Curr Cardiol Rep 19(3), 2017
PMID: 28251514
Induced Pluripotent Stem Cells 10 Years Later: For Cardiac Applications.
Yoshida Y, Yamanaka S., Circ Res 120(12), 2017
PMID: 28596174
Thyroid and Glucocorticoid Hormones Promote Functional T-Tubule Development in Human-Induced Pluripotent Stem Cell-Derived Cardiomyocytes.
Parikh SS, Blackwell DJ, Gomez-Hurtado N, Frisk M, Wang L, Kim K, Dahl CP, Fiane A, Tønnessen T, Kryshtal DO, Louch WE, Knollmann BC., Circ Res 121(12), 2017
PMID: 28974554
Tailoring Mathematical Models to Stem-Cell Derived Cardiomyocyte Lines Can Improve Predictions of Drug-Induced Changes to Their Electrophysiology.
Lei CL, Wang K, Clerx M, Johnstone RH, Hortigon-Vinagre MP, Zamora V, Allan A, Smith GL, Gavaghan DJ, Mirams GR, Polonchuk L., Front Physiol 8(), 2017
PMID: 29311950
Human engineered heart tissue as a model system for drug testing.
Eder A, Vollert I, Hansen A, Eschenhagen T., Adv Drug Deliv Rev 96(), 2016
PMID: 26026976
Direct hydrogel encapsulation of pluripotent stem cells enables ontomimetic differentiation and growth of engineered human heart tissues.
Kerscher P, Turnbull IC, Hodge AJ, Kim J, Seliktar D, Easley CJ, Costa KD, Lipke EA., Biomaterials 83(), 2016
PMID: 26826618
The electrophysiological development of cardiomyocytes.
Liu J, Laksman Z, Backx PH., Adv Drug Deliv Rev 96(), 2016
PMID: 26788696
Evolution of strategies to improve preclinical cardiac safety testing.
Gintant G, Sager PT, Stockbridge N., Nat Rev Drug Discov 15(7), 2016
PMID: 26893184
Induced pluripotent stem cells: at the heart of cardiovascular precision medicine.
Chen IY, Matsa E, Wu JC., Nat Rev Cardiol 13(6), 2016
PMID: 27009425
Navigating the labyrinth of cardiac regeneration.
Lambers E, Kume T., Dev Dyn 245(7), 2016
PMID: 26890576
Maturation of pluripotent stem cell derived cardiomyocytes: The new challenge.
Aigha I, Raynaud C., Glob Cardiol Sci Pract 2016(1), 2016
PMID: 29043256
Human derived cardiomyocytes: A decade of knowledge after the discovery of induced pluripotent stem cells.
Barbuti A, Benzoni P, Campostrini G, Dell'Era P., Dev Dyn 245(12), 2016
PMID: 27599668
Assessment of cardiomyocyte contraction in human-induced pluripotent stem cell-derived cardiomyocytes.
Pointon A, Harmer AR, Dale IL, Abi-Gerges N, Bowes J, Pollard C, Garside H., Toxicol Sci 144(2), 2015
PMID: 25538221
Hold or fold--proteins in advanced heart failure and myocardial recovery.
Mahr C, Gundry RL., Proteomics Clin Appl 9(1-2), 2015
PMID: 25331159
Identification of cardiovascular lineage descendants at single-cell resolution.
Li G, Plonowska K, Kuppusamy R, Sturzu A, Wu SM., Development 142(5), 2015
PMID: 25633351
Ultrastructural maturation of human bone marrow mesenchymal stem cells-derived cardiomyocytes under alternative induction of 5-azacytidine.
Piryaei A, Soleimani M, Heidari MH, Saheli M, Rohani R, Almasieh M., Cell Biol Int 39(5), 2015
PMID: 25573851
Cardiac disease modeling using induced pluripotent stem cell-derived human cardiomyocytes.
Dell'Era P, Benzoni P, Crescini E, Valle M, Xia E, Consiglio A, Memo M., World J Stem Cells 7(2), 2015
PMID: 25815118
Proteomic Analysis of Human Pluripotent Stem Cell-Derived, Fetal, and Adult Ventricular Cardiomyocytes Reveals Pathways Crucial for Cardiac Metabolism and Maturation.
Poon E, Keung W, Liang Y, Ramalingam R, Yan B, Zhang S, Chopra A, Moore J, Herren A, Lieu DK, Wong HS, Weng Z, Wong OT, Lam YW, Tomaselli GF, Chen C, Boheler KR, Li RA., Circ Cardiovasc Genet 8(3), 2015
PMID: 25759434
Cardiomyopathy in a dish: using human inducible pluripotent stem cells to model inherited cardiomyopathies.
Kamdar F, Klaassen Kamdar A, Koyano-Nakagawa N, Garry MG, Garry DJ., J Card Fail 21(9), 2015
PMID: 25934595
"The state of the heart": Recent advances in engineering human cardiac tissue from pluripotent stem cells.
Sirabella D, Cimetta E, Vunjak-Novakovic G., Exp Biol Med (Maywood) 240(8), 2015
PMID: 26069271
Prospects for In Vitro Myofilament Maturation in Stem Cell-Derived Cardiac Myocytes.
Schwan J, Campbell SG., Biomark Insights 10(suppl 1), 2015
PMID: 26085788
Sensing Cardiac Electrical Activity With a Cardiac Myocyte--Targeted Optogenetic Voltage Indicator.
Chang Liao ML, de Boer TP, Mutoh H, Raad N, Richter C, Wagner E, Downie BR, Unsöld B, Arooj I, Streckfuss-Bömeke K, Döker S, Luther S, Guan K, Wagner S, Lehnart SE, Maier LS, Stühmer W, Wettwer E, van Veen T, Morlock MM, Knöpfel T, Zimmermann WH., Circ Res 117(5), 2015
PMID: 26078285
Direct reprogramming of mouse fibroblasts into cardiomyocytes with chemical cocktails.
Fu Y, Huang C, Xu X, Gu H, Ye Y, Jiang C, Qiu Z, Xie X., Cell Res 25(9), 2015
PMID: 26292833
Induced pluripotent stem cells as cardiac arrhythmic in vitro models and the impact for drug discovery.
Sarić T, Halbach M, Khalil M, Er F., Expert Opin Drug Discov 9(1), 2014
PMID: 24294840
Genetics and disease of ventricular muscle.
Fatkin D, Seidman CE, Seidman JG., Cold Spring Harb Perspect Med 4(1), 2014
PMID: 24384818
Small molecules enable cardiac reprogramming of mouse fibroblasts with a single factor, Oct4.
Wang H, Cao N, Spencer CI, Nie B, Ma T, Xu T, Zhang Y, Wang X, Srivastava D, Ding S., Cell Rep 6(5), 2014
PMID: 24561253
Myocardial tissue engineering: in vitro models.
Vunjak Novakovic G, Eschenhagen T, Mummery C., Cold Spring Harb Perspect Med 4(3), 2014
PMID: 24591534
Induced pluripotent stem cell-derived cardiomyocytes for drug development and toxicity testing.
Sinnecker D, Laugwitz KL, Moretti A., Pharmacol Ther 143(2), 2014
PMID: 24657289
Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells.
Yang X, Rodriguez M, Pabon L, Fischer KA, Reinecke H, Regnier M, Sniadecki NJ, Ruohola-Baker H, Murry CE., J Mol Cell Cardiol 72(), 2014
PMID: 24735830
hiPSC Modeling of Inherited Cardiomyopathies.
Jung G, Bernstein D., Curr Treat Options Cardiovasc Med 16(7), 2014
PMID: 24838688
Calcium transients closely reflect prolonged action potentials in iPSC models of inherited cardiac arrhythmia.
Spencer CI, Baba S, Nakamura K, Hua EA, Sears MA, Fu CC, Zhang J, Balijepalli S, Tomoda K, Hayashi Y, Lizarraga P, Wojciak J, Scheinman MM, Aalto-Setälä K, Makielski JC, January CT, Healy KE, Kamp TJ, Yamanaka S, Conklin BR., Stem Cell Reports 3(2), 2014
PMID: 25254341
Induced pluripotent stem cells for the study of cardiovascular disease.
Savla JJ, Nelson BC, Perry CN, Adler ED., J Am Coll Cardiol 64(5), 2014
PMID: 25082586
High efficiency differentiation of human pluripotent stem cells to cardiomyocytes and characterization by flow cytometry.
Bhattacharya S, Burridge PW, Kropp EM, Chuppa SL, Kwok WM, Wu JC, Boheler KR, Gundry RL., J Vis Exp (91), 2014
PMID: 25286293
Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells.
Lundy SD, Zhu WZ, Regnier M, Laflamme MA., Stem Cells Dev 22(14), 2013
PMID: 23461462
Concise review: maturation phases of human pluripotent stem cell-derived cardiomyocytes.
Robertson C, Tran DD, George SC., Stem Cells 31(5), 2013
PMID: 23355363
Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes.
Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, Xiao Y, Zhang B, Jiang J, Massé S, Gagliardi M, Hsieh A, Thavandiran N, Laflamme MA, Nanthakumar K, Gross GJ, Backx PH, Keller G, Radisic M., Nat Methods 10(8), 2013
PMID: 23793239
Calcium signalling of human pluripotent stem cell-derived cardiomyocytes.
Li S, Chen G, Li RA., J Physiol 591(21), 2013
PMID: 24018947
Isolation, culture, and functional characterization of adult mouse cardiomyoctyes.
Graham EL, Balla C, Franchino H, Melman Y, del Monte F, Das S., J Vis Exp (79), 2013
PMID: 24084584
Transcriptome-guided functional analyses reveal novel biological properties and regulatory hierarchy of human embryonic stem cell-derived ventricular cardiomyocytes crucial for maturation.
Poon E, Yan B, Zhang S, Rushing S, Keung W, Ren L, Lieu DK, Geng L, Kong CW, Wang J, Wong HS, Boheler KR, Li RA., PLoS One 8(10), 2013
PMID: 24204964
Pluripotent stem cell models of human heart disease.
Moretti A, Laugwitz KL, Dorn T, Sinnecker D, Mummery C., Cold Spring Harb Perspect Med 3(11), 2013
PMID: 24186488
Engineered human pluripotent stem cell-derived cardiac cells and tissues for electrophysiological studies.
Lieu DK, Turnbull IC, Costa KD, Li RA., Drug Discov Today Dis Models 9(4), 2012
PMID: 29422934
Gene and cell therapies for the failing heart to prevent sudden arrhythmic death.
Sovari AA, Dudley SC., Minerva Cardioangiol 60(4), 2012
PMID: 22858914
Electrophysiological and contractile function of cardiomyocytes derived from human embryonic stem cells.
Blazeski A, Zhu R, Hunter DW, Weinberg SH, Boheler KR, Zambidis ET, Tung L., Prog Biophys Mol Biol 110(2-3), 2012
PMID: 22958937
Mathematical modelling of the action potential of human embryonic stem cell derived cardiomyocytes.
Paci M, Sartiani L, Del Lungo M, Jaconi M, Mugelli A, Cerbai E, Severi S., Biomed Eng Online 11(), 2012
PMID: 22929020
Human ES-cell-derived cardiomyocytes electrically couple and suppress arrhythmias in injured hearts.
Shiba Y, Fernandes S, Zhu WZ, Filice D, Muskheli V, Kim J, Palpant NJ, Gantz J, Moyes KW, Reinecke H, Van Biber B, Dardas T, Mignone JL, Izawa A, Hanna R, Viswanathan M, Gold JD, Kotlikoff MI, Sarvazyan N, Kay MW, Murry CE, Laflamme MA., Nature 489(7415), 2012
PMID: 22864415
Genetic engineering of somatic cells to study and improve cardiac function.
Kirkton RD, Bursac N., Europace 14 Suppl 5(), 2012
PMID: 23104914
Ouabain facilitates cardiac differentiation of mouse embryonic stem cells through ERK1/2 pathway.
Lee YK, Ng KM, Lai WH, Man C, Lieu DK, Lau CP, Tse HF, Siu CW., Acta Pharmacol Sin 32(1), 2011
PMID: 21151160
Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells.
Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, Ye M, Zhu S, Senyei G, Lum L, Ehrlich BE, Qyang Y., J Mol Cell Cardiol 51(3), 2011
PMID: 21569778
Exogenous expression of human apoA-I enhances cardiac differentiation of pluripotent stem cells.
Ng KM, Lee YK, Lai WH, Chan YC, Fung ML, Tse HF, Siu CW., PLoS One 6(5), 2011
PMID: 21589943
Cobalt chloride pretreatment promotes cardiac differentiation of human embryonic stem cells under atmospheric oxygen level.
Ng KM, Chan YC, Lee YK, Lai WH, Au KW, Fung ML, Siu CW, Li RA, Tse HF., Cell Reprogram 13(6), 2011
PMID: 22029419
Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes.
Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, Tse HF, Siu CW., Stem Cell Rev Rep 7(4), 2011
PMID: 21614516
Distinct roles of microRNA-1 and -499 in ventricular specification and functional maturation of human embryonic stem cell-derived cardiomyocytes.
Fu JD, Rushing SN, Lieu DK, Chan CW, Kong CW, Geng L, Wilson KD, Chiamvimonvat N, Boheler KR, Wu JC, Keller G, Hajjar RJ, Li RA., PLoS One 6(11), 2011
PMID: 22110643
Exogenous expression of HIF-1 alpha promotes cardiac differentiation of embryonic stem cells.
Ng KM, Lee YK, Chan YC, Lai WH, Fung ML, Li RA, Siu CW, Tse HF., J Mol Cell Cardiol 48(6), 2010
PMID: 20116384
Triiodothyronine promotes cardiac differentiation and maturation of embryonic stem cells via the classical genomic pathway.
Lee YK, Ng KM, Chan YC, Lai WH, Au KW, Ho CY, Wong LY, Lau CP, Tse HF, Siu CW., Mol Endocrinol 24(9), 2010
PMID: 20667986
Facilitated maturation of Ca2+ handling properties of human embryonic stem cell-derived cardiomyocytes by calsequestrin expression.
Liu J, Lieu DK, Siu CW, Fu JD, Tse HF, Li RA., Am J Physiol Cell Physiol 297(1), 2009
PMID: 19357236

31 References

Daten bereitgestellt von Europe PubMed Central.

Developmental changes in cardiomyocytes differentiated from human embryonic stem cells: a molecular and electrophysiological approach.
Sartiani L, Bettiol E, Stillitano F, Mugelli A, Cerbai E, Jaconi ME., Stem Cells 25(5), 2007
PMID: 17255522
Calcium handling in embryonic stem cell-derived cardiac myocytes: of mice and men.
Itzhaki I, Schiller J, Beyar R, Satin J, Gepstein L., Ann. N. Y. Acad. Sci. 1080(), 2006
PMID: 17132785
Cardiac excitation-contraction coupling.
Bers DM., Nature 415(6868), 2002
PMID: 11805843
T-tubule function in mammalian cardiac myocytes.
Brette F, Orchard C., Circ. Res. 92(11), 2003
PMID: 12805236
Resurgence of cardiac t-tubule research.
Brette F, Orchard C., Physiology (Bethesda) 22(), 2007
PMID: 17557937
Calcium biology of the transverse tubules in heart.
Song LS, Guatimosim S, Gomez-Viquez L, Sobie EA, Ziman A, Hartmann H, Lederer WJ., Ann. N. Y. Acad. Sci. 1047(), 2005
PMID: 16093488
Reduced synchrony of Ca2+ release with loss of T-tubules-a comparison to Ca2+ release in human failing cardiomyocytes.
Louch WE, Bito V, Heinzel FR, Macianskiene R, Vanhaecke J, Flameng W, Mubagwa K, Sipido KR., Cardiovasc. Res. 62(1), 2004
PMID: 15023553
Calcium handling in human embryonic stem cell-derived cardiomyocytes.
Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L., Stem Cells 26(8), 2008
PMID: 18483424
Characteristics of calcium sparks in cardiomyocytes derived from embryonic stem cells.
Sauer H, Theben T, Hescheler J, Lindner M, Brandt MC, Wartenberg M., Am. J. Physiol. Heart Circ. Physiol. 281(1), 2001
PMID: 11406510
Differentiation of pluripotent embryonic stem cells into cardiomyocytes.
Boheler KR, Czyz J, Tweedie D, Yang HT, Anisimov SV, Wobus AM., Circ. Res. 91(3), 2002
PMID: 12169644
Calcium handling in human embryonic stem cell-derived cardiomyocytes.
Satin J, Itzhaki I, Rapoport S, Schroder EA, Izu L, Arbel G, Beyar R, Balke CW, Schiller J, Gepstein L., Stem Cells 26(8), 2008
PMID: 18483424
Ultrastructural comparison of developing mouse embryonic stem cell- and in vivo-derived cardiomyocytes.
Baharvand H, Piryaei A, Rohani R, Taei A, Heidari MH, Hosseini A., Cell Biol. Int. 30(10), 2006
PMID: 16877013
Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes.
Snir M, Kehat I, Gepstein A, Coleman R, Itskovitz-Eldor J, Livne E, Gepstein L., Am. J. Physiol. Heart Circ. Physiol. 285(6), 2003
PMID: 14613910
Fetal and postnatal development of Ca2+ transients and Ca2+ sparks in rat cardiomyocytes.
Seki S, Nagashima M, Yamada Y, Tsutsuura M, Kobayashi T, Namiki A, Tohse N., Cardiovasc. Res. 58(3), 2003
PMID: 12798426
Subcellular [Ca2+]i gradients during excitation-contraction coupling in newborn rabbit ventricular myocytes.
Haddock PS, Coetzee WA, Cho E, Porter L, Katoh H, Bers DM, Jafri MS, Artman M., Circ. Res. 85(5), 1999
PMID: 10473671
Crucial role of the sarcoplasmic reticulum in the developmental regulation of Ca2+ transients and contraction in cardiomyocytes derived from embryonic stem cells.
Fu JD, Li J, Tweedie D, Yu HM, Chen L, Wang R, Riordon DR, Brugh SA, Wang SQ, Boheler KR, Yang HT., FASEB J. 20(1), 2005
PMID: 16249315
Role of cholesterol in developing T-tubules: analogous mechanisms for T-tubule and caveolae biogenesis.
Carozzi AJ, Ikonen E, Lindsay MR, Parton RG., Traffic 1(4), 2000
PMID: 11208118
Caves and labyrinths: caveolae and transverse tubules in skeletal muscle
Parton RG, Carozzi AJ, Gustavsson J., 0
The crystal structure of the BAR domain from human Bin1/amphiphysin II and its implications for molecular recognition.
Casal E, Federici L, Zhang W, Fernandez-Recio J, Priego EM, Miguel RN, DuHadaway JB, Prendergast GC, Luisi BF, Laue ED., Biochemistry 45(43), 2006
PMID: 17059209
Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle.
Lee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P., Science 297(5584), 2002
PMID: 12183633
Predetermined recruitment of calcium release sites underlies excitation-contraction coupling in rat atrial myocytes.
Mackenzie L, Bootman MD, Berridge MJ, Lipp P., J. Physiol. (Lond.) 530(Pt 3), 2001
PMID: 11158273
The spatial pattern of atrial cardiomyocyte calcium signalling modulates contraction.
Mackenzie L, Roderick HL, Berridge MJ, Conway SJ, Bootman MD., J. Cell. Sci. 117(Pt 26), 2004
PMID: 15561771
Spatiotemporal characteristics of SR Ca(2+) uptake and release in detubulated rat ventricular myocytes.
Brette F, Despa S, Bers DM, Orchard CH., J. Mol. Cell. Cardiol. 39(5), 2005
PMID: 16198369
HSP90 and eNOS partially co-localize and change cellular localization in relation to different ECM components in 2D and 3D cultures of adult rat cardiomyocytes.
Di Felice V, Cappello F, Montalbano A, Ardizzone NM, De Luca A, Macaluso F, Amelio D, Cerra MC, Zummo G., Biol. Cell 99(12), 2007
PMID: 17596122
Temporal and spatial properties of cellular Ca2+ flux in trout ventricular myocytes.
Shiels HA, White E., Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(6), 2005
PMID: 15650128
Role of the transverse-axial tubule system in generating calcium sparks and calcium transients in rat atrial myocytes.
Kirk MM, Izu LT, Chen-Izu Y, McCulle SL, Wier WG, Balke CW, Shorofsky SR., J. Physiol. (Lond.) 547(Pt 2), 2003
PMID: 12562899
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 19290776
PubMed | Europe PMC

Suchen in

Google Scholar