Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC (2010)
J. Immunol. 184(7): 3927-3936.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
den Hartigh, L.J.; Connolly-Rohrbach, J.E.; Fore, S.; Huser, ThomasUniBi ; Rutledge, J.C.
Erscheinungsjahr
2010
Zeitschriftentitel
J. Immunol.
Band
184
Ausgabe
7
Seite(n)
3927-3936
ISSN
0022-1767
eISSN
1550-6606
Page URI
https://pub.uni-bielefeld.de/record/2352472

Zitieren

den Hartigh LJ, Connolly-Rohrbach JE, Fore S, Huser T, Rutledge JC. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 2010;184(7):3927-3936.
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., & Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), 3927-3936. https://doi.org/10.4049/jimmunol.0903475
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, Thomas, and Rutledge, J.C. 2010. “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”. J. Immunol. 184 (7): 3927-3936.
den Hartigh, L. J., Connolly-Rohrbach, J. E., Fore, S., Huser, T., and Rutledge, J. C. (2010). Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936.
den Hartigh, L.J., et al., 2010. Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol., 184(7), p 3927-3936.
L.J. den Hartigh, et al., “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”, J. Immunol., vol. 184, 2010, pp. 3927-3936.
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, T., Rutledge, J.C.: Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes. J. Immunol. 184, 3927-3936 (2010).
den Hartigh, L.J., Connolly-Rohrbach, J.E., Fore, S., Huser, Thomas, and Rutledge, J.C. “Fatty acids from Very Low-Density Lipoprotein Lipolysis Products Induce Lipid Droplet Accumulation in Human Monocytes”. J. Immunol. 184.7 (2010): 3927-3936.

40 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Hydroxypropyl-β-cyclodextrin protects from kidney disease in experimental Alport syndrome and focal segmental glomerulosclerosis.
Mitrofanova A, Molina J, Varona Santos J, Guzman J, Morales XA, Ducasa GM, Bryn J, Sloan A, Volosenco I, Kim JJ, Ge M, Mallela SK, Kretzler M, Eddy S, Martini S, Wahl P, Pastori S, Mendez AJ, Burke GW, Merscher S, Fornoni A., Kidney Int 94(6), 2018
PMID: 30301568
Triglyceride-rich lipoprotein lipolysis products increase blood-brain barrier transfer coefficient and induce astrocyte lipid droplets and cell stress.
Lee LL, Aung HH, Wilson DW, Anderson SE, Rutledge JC, Rutkowsky JM., Am J Physiol Cell Physiol 312(4), 2017
PMID: 28077357
Real-time Raman and SRS imaging of living human macrophages reveals cell-to-cell heterogeneity and dynamics of lipid uptake.
Stiebing C, Meyer T, Rimke I, Matthäus C, Schmitt M, Lorkowski S, Popp J., J Biophotonics 10(9), 2017
PMID: 28164480
Transcriptomic Analysis of THP-1 Macrophages Exposed to Lipoprotein Hydrolysis Products Generated by Lipoprotein Lipase.
Thyagarajan N, Marshall JD, Pickett AT, Schumacher C, Yang Y, Christian SL, Brown RJ., Lipids 52(3), 2017
PMID: 28205069
Effects of dyslipidaemia on monocyte production and function in cardiovascular disease.
Rahman MS, Murphy AJ, Woollard KJ., Nat Rev Cardiol 14(7), 2017
PMID: 28300081
Effects of n-3 fatty acid treatment on monocyte phenotypes in humans with hypertriglyceridemia.
Dai Perrard XY, Lian Z, Bobotas G, Dicklin MR, Maki KC, Wu H., J Clin Lipidol 11(6), 2017
PMID: 28942094
Lipid Droplet Fusion in Mammary Epithelial Cells is Regulated by Phosphatidylethanolamine Metabolism.
Cohen BC, Raz C, Shamay A, Argov-Argaman N., J Mammary Gland Biol Neoplasia 22(4), 2017
PMID: 29188493
Macrophages and Dendritic Cells: Partners in Atherogenesis.
Cybulsky MI, Cheong C, Robbins CS., Circ Res 118(4), 2016
PMID: 26892963
Microdomains, Inflammation, and Atherosclerosis.
Sorci-Thomas MG, Thomas MJ., Circ Res 118(4), 2016
PMID: 26892966
Lipotoxic brain microvascular injury is mediated by activating transcription factor 3-dependent inflammatory and oxidative stress pathways.
Aung HH, Altman R, Nyunt T, Kim J, Nuthikattu S, Budamagunta M, Voss JC, Wilson D, Rutledge JC, Villablanca AC., J Lipid Res 57(6), 2016
PMID: 27087439
Postprandial Inflammatory Responses and Free Fatty Acids in Plasma of Adults Who Consumed a Moderately High-Fat Breakfast with and without Blueberry Powder in a Randomized Placebo-Controlled Trial.
Ono-Moore KD, Snodgrass RG, Huang S, Singh S, Freytag TL, Burnett DJ, Bonnel EL, Woodhouse LR, Zunino SJ, Peerson JM, Lee JY, Rutledge JC, Hwang DH., J Nutr 146(7), 2016
PMID: 27306892
Prediction of Drug Penetration in Tuberculosis Lesions.
Sarathy JP, Zuccotto F, Hsinpin H, Sandberg L, Via LE, Marriner GA, Masquelin T, Wyatt P, Ray P, Dartois V., ACS Infect Dis 2(8), 2016
PMID: 27626295
Postprandial Monocyte Activation in Individuals With Metabolic Syndrome.
Khan IM, Pokharel Y, Dadu RT, Lewis DE, Hoogeveen RC, Wu H, Ballantyne CM., J Clin Endocrinol Metab 101(11), 2016
PMID: 27575945
Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia.
Xu L, Dai Perrard X, Perrard JL, Yang D, Xiao X, Teng BB, Simon SI, Ballantyne CM, Wu H., Arterioscler Thromb Vasc Biol 35(8), 2015
PMID: 26112011
Raman spectroscopy for physiological investigations of tissues and cells.
Huser T, Chan J., Adv Drug Deliv Rev 89(), 2015
PMID: 26144996
Postprandial VLDL lipolysis products increase monocyte adhesion and lipid droplet formation via activation of ERK2 and NFκB.
den Hartigh LJ, Altman R, Norman JE, Rutledge JC., Am J Physiol Heart Circ Physiol 306(1), 2014
PMID: 24163071
Apolipoprotein E2 accentuates postprandial inflammation and diet-induced obesity to promote hyperinsulinemia in mice.
Kuhel DG, Konaniah ES, Basford JE, McVey C, Goodin CT, Chatterjee TK, Weintraub NL, Hui DY., Diabetes 62(2), 2013
PMID: 22961083
p38 MAPK protects human monocytes from postprandial triglyceride-rich lipoprotein-induced toxicity.
Lopez S, Jaramillo S, Varela LM, Ortega A, Bermudez B, Abia R, Muriana FJ., J Nutr 143(5), 2013
PMID: 23486980
Mice exposed in situ to urban air pollution exhibit pulmonary alterations in gene expression in the lipid droplet synthesis pathways.
Rowan-Carroll A, Halappanavar S, Williams A, Somers CM, Yauk CL., Environ Mol Mutagen 54(4), 2013
PMID: 23536514
Postprandial lipoproteins and the molecular regulation of vascular homeostasis.
Botham KM, Wheeler-Jones CP., Prog Lipid Res 52(4), 2013
PMID: 23774609
Induction of ATF3 gene network by triglyceride-rich lipoprotein lipolysis products increases vascular apoptosis and inflammation.
Aung HH, Lame MW, Gohil K, An CI, Wilson DW, Rutledge JC., Arterioscler Thromb Vasc Biol 33(9), 2013
PMID: 23868936
Biodiesel versus diesel exposure: enhanced pulmonary inflammation, oxidative stress, and differential morphological changes in the mouse lung.
Yanamala N, Hatfield MK, Farcas MT, Schwegler-Berry D, Hummer JA, Shurin MR, Birch ME, Gutkin DW, Kisin E, Kagan VE, Bugarski AD, Shvedova AA., Toxicol Appl Pharmacol 272(2), 2013
PMID: 23886933
The effects of dietary fatty acids on the postprandial triglyceride-rich lipoprotein/apoB48 receptor axis in human monocyte/macrophage cells.
Varela LM, Ortega-Gomez A, Lopez S, Abia R, Muriana FJ, Bermudez B., J Nutr Biochem 24(12), 2013
PMID: 24231096
ApoE suppresses atherosclerosis by reducing lipid accumulation in circulating monocytes and the expression of inflammatory molecules on monocytes and vascular endothelium.
Gaudreault N, Kumar N, Posada JM, Stephens KB, Reyes de Mochel NS, Eberlé D, Olivas VR, Kim RY, Harms MJ, Johnson S, Messina LM, Rapp JH, Raffai RL., Arterioscler Thromb Vasc Biol 32(2), 2012
PMID: 22053073
Association of postalimentary lipemia with atherosclerotic manifestations.
Tentor J, Nakamura RT, Gidlund M, Barros-Mazon S, Harada LM, Zago VS, Oba JF, Faria EC., Braz J Med Biol Res 45(11), 2012
PMID: 22872287
Simultaneous activation of p38 and JNK by arachidonic acid stimulates the cytosolic phospholipase A2-dependent synthesis of lipid droplets in human monocytes.
Guijas C, Pérez-Chacón G, Astudillo AM, Rubio JM, Gil-de-Gómez L, Balboa MA, Balsinde J., J Lipid Res 53(11), 2012
PMID: 22949356
Postprandial apoE isoform and conformational changes associated with VLDL lipolysis products modulate monocyte inflammation.
den Hartigh LJ, Altman R, Hutchinson R, Petrlova J, Budamagunta MS, Tetali SD, Lagerstedt JO, Voss JC, Rutledge JC., PLoS One 7(11), 2012
PMID: 23209766
CD11c/CD18 expression is upregulated on blood monocytes during hypertriglyceridemia and enhances adhesion to vascular cell adhesion molecule-1.
Gower RM, Wu H, Foster GA, Devaraj S, Jialal I, Ballantyne CM, Knowlton AA, Simon SI., Arterioscler Thromb Vasc Biol 31(1), 2011
PMID: 21030716
Lipid-cell interactions in human monocytes investigated by doubly-resonant coherent anti-Stokes Raman scattering microscopy.
Weeks T, Schie I, den Hartigh LJ, Rutledge JC, Huser T., J Biomed Opt 16(2), 2011
PMID: 21361680
Proteome of skeletal muscle lipid droplet reveals association with mitochondria and apolipoprotein a-I.
Zhang H, Wang Y, Li J, Yu J, Pu J, Li L, Zhang H, Zhang S, Peng G, Yang F, Liu P., J Proteome Res 10(10), 2011
PMID: 21870882
Role of triglyceride-rich lipoproteins in diabetic nephropathy.
Rutledge JC, Ng KF, Aung HH, Wilson DW., Nat Rev Nephrol 6(6), 2010
PMID: 20440276

45 References

Daten bereitgestellt von Europe PubMed Central.

Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool.
Triggiani M, Oriente A, Seeds MC, Bass DA, Marone G, Chilton FH., J. Exp. Med. 182(5), 1995
PMID: 7595189
Leukocyte lipid body formation and eicosanoid generation: cyclooxygenase-independent inhibition by aspirin.
Bozza PT, Payne JL, Morham SG, Langenbach R, Smithies O, Weller PF., Proc. Natl. Acad. Sci. U.S.A. 93(20), 1996
PMID: 8855314
Atherosclerosis--an inflammatory disease.
Ross R., N. Engl. J. Med. 340(2), 1999
PMID: 9887164
Identification of caveolin-1 as a fatty acid binding protein.
Trigatti BL, Anderson RG, Gerber GE., Biochem. Biophys. Res. Commun. 255(1), 1999
PMID: 10082651
Mechanisms of lipid-body formation.
Murphy DJ, Vance J., Trends Biochem. Sci. 24(3), 1999
PMID: 10203758
Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies.
Pol A, Martin S, Fernandez MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG., Mol. Biol. Cell 16(4), 2005
PMID: 15689493
Protein kinase B/Akt signalling is required for palmitate-induced beta-cell lipotoxicity.
Higa M, Shimabukuro M, Shimajiri Y, Takasu N, Shinjyo T, Inaba T., Diabetes Obes Metab 8(2), 2006
PMID: 16448528
Regulation of gene expression in RAW 264.7 macrophage cell line by interferon-gamma.
Kota RS, Rutledge JC, Gohil K, Kumar A, Enelow RI, Ramana CV., Biochem. Biophys. Res. Commun. 342(4), 2006
PMID: 16516165
Lipid droplets: a unified view of a dynamic organelle.
Martin S, Parton RG., Nat. Rev. Mol. Cell Biol. 7(5), 2006
PMID: 16550215
Long-chain fatty acids induce lipid droplet formation in a cultured human hepatocyte in a manner dependent of Acyl-CoA synthetase.
Fujimoto Y, Onoduka J, Homma KJ, Yamaguchi S, Mori M, Higashi Y, Makita M, Kinoshita T, Noda J, Itabe H, Takanoa T., Biol. Pharm. Bull. 29(11), 2006
PMID: 17077510
Cytoplasmic lipid droplets: rediscovery of an old structure as a unique platform.
Fujimoto T, Ohsaki Y., Ann. N. Y. Acad. Sci. 1086(), 2006
PMID: 17185509
Proteins under new management: lipid droplets deliver.
Welte MA., Trends Cell Biol. 17(8), 2007
PMID: 17766117
Lipid bodies are reservoirs of cyclooxygenase-2 and sites of prostaglandin-E2 synthesis in colon cancer cells.
Accioly MT, Pacheco P, Maya-Monteiro CM, Carrossini N, Robbs BK, Oliveira SS, Kaufmann C, Morgado-Diaz JA, Bozza PT, Viola JP., Cancer Res. 68(6), 2008
PMID: 18339853
Leukocyte activation by triglyceride-rich lipoproteins.
Alipour A, van Oostrom AJ, Izraeljan A, Verseyden C, Collins JM, Frayn KN, Plokker TW, Elte JW, Castro Cabezas M., Arterioscler. Thromb. Vasc. Biol. 28(4), 2008
PMID: 18218988
Lipid droplets.
Listenberger LL, Brown DA., Curr. Biol. 18(6), 2008
PMID: 18364222
Lipid droplets: a classic organelle with new outfits.
Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y., Histochem. Cell Biol. 130(2), 2008
PMID: 18546013
Triglyceride-rich lipoprotein lipolysis releases neutral and oxidized FFAs that induce endothelial cell inflammation.
Wang L, Gill R, Pedersen TL, Higgins LJ, Newman JW, Rutledge JC., J. Lipid Res. 50(2), 2008
PMID: 18812596
Induction of proinflammatory cytokines by long-chain saturated fatty acids in human macrophages.
Haversen L, Danielsson KN, Fogelstrand L, Wiklund O., Atherosclerosis 202(2), 2008
PMID: 18599066
Functional role of CD11c+ monocytes in atherogenesis associated with hypercholesterolemia.
Wu H, Gower RM, Wang H, Perrard XY, Ma R, Bullard DC, Burns AR, Paul A, Smith CW, Simon SI, Ballantyne CM., Circulation 119(20), 2009
PMID: 19433759
Connecting lipid droplet biology and the metabolic syndrome.
Le Lay S, Dugail I., Prog. Lipid Res. 48(3-4), 2009
PMID: 19303902
The influence of sex, body composition, and nonesterified fatty acids on serum adipokine concentrations.
Plaisance EP, Grandjean PW, Judd RL, Jones KW, Taylor JK., Metab. Clin. Exp. 58(11), 2009
PMID: 19592049
Label-free quantitative analysis of lipid metabolism in living Caenorhabditis elegans.
Le TT, Duren HM, Slipchenko MN, Hu CD, Cheng JX., J. Lipid Res. 51(3), 2009
PMID: 19776402
Postprandial lipoprotein metabolism and atherosclerosis.
Karpe F., J. Intern. Med. 246(4), 1999
PMID: 10583705
1H NMR visible lipids in the life and death of cells.
Hakumaki JM, Kauppinen RA., Trends Biochem. Sci. 25(8), 2000
PMID: 10916153
Lipid droplets: proteins floating on a pool of fat.
Brown DA., Curr. Biol. 11(11), 2001
PMID: 11516669
Inflammation and immune responses in atherosclerosis.
Greaves DR, Channon KM., Trends Immunol. 23(11), 2002
PMID: 12401406
The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition.
Tauchi-Sato K, Ozeki S, Houjou T, Taguchi R, Fujimoto T., J. Biol. Chem. 277(46), 2002
PMID: 12221100
Triglyceride accumulation protects against fatty acid-induced lipotoxicity.
Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS, Schaffer JE., Proc. Natl. Acad. Sci. U.S.A. 100(6), 2003
PMID: 12629214
Role of monocytes in atherogenesis.
Osterud B, Bjorklid E., Physiol. Rev. 83(4), 2003
PMID: 14506301
Dynamic and regulated association of caveolin with lipid bodies: modulation of lipid body motility and function by a dominant negative mutant.
Pol A, Martin S, Fernandez MA, Ferguson C, Carozzi A, Luetterforst R, Enrich C, Parton RG., Mol. Biol. Cell 15(1), 2003
PMID: 14528016
Synovial fluid leukocytosis associated with intracellular lipid inclusions.
Weinstein J., Arch. Intern. Med. 140(4), 1980
PMID: 6244798
Organelle relationships in cultured 3T3-L1 preadipocytes.
Novikoff AB, Novikoff PM, Rosen OM, Rubin CS., J. Cell Biol. 87(1), 1980
PMID: 7191426
Activation of human peripheral blood monocytes by lipoproteins.
Kelley JL, Rozek MM, Suenram CA, Schwartz CJ., Am. J. Pathol. 130(2), 1988
PMID: 3124626
Metabolism of triglyceride-rich lipoproteins during alimentary lipemia.
Karpe F, Steiner G, Olivecrona T, Carlson LA, Hamsten A., J. Clin. Invest. 91(3), 1993
PMID: 8450056
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 20208007
PubMed | Europe PMC

Suchen in

Google Scholar