Optical trapping and propulsion of red blood cells on waveguide surfaces

Ahluwalia BS, McCourt P, Huser T, Helleso OG (2010)
Opt. Express 20(18): 21053-21061.

Download
Es wurde kein Volltext hochgeladen. Nur Publikationsnachweis!
Zeitschriftenaufsatz | Veröffentlicht | Englisch
Autor
; ; ;
Abstract / Bemerkung
We have studied optical trapping and propulsion of red blood cells in the evanescent field of optical waveguides. Cell propulsion is found to be highly dependent on the biological medium and serum proteins the cells are submerged in. Waveguides made of tantalum pentoxide are shown to be efficient for cell propulsion. An optical propulsion velocity of up to 6 mu m/s on a waveguide with a width of similar to 6 mu m is reported. Stable optical trapping and propulsion of cells during transverse flow is also reported. (C)2010 Optical Society of America
Erscheinungsjahr
Zeitschriftentitel
Opt. Express
Band
20
Ausgabe
18
Seite(n)
21053-21061
ISSN
eISSN
PUB-ID

Zitieren

Ahluwalia BS, McCourt P, Huser T, Helleso OG. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express. 2010;20(18):21053-21061.
Ahluwalia, B. S., McCourt, P., Huser, T., & Helleso, O. G. (2010). Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express, 20(18), 21053-21061. doi:10.1364/OE.18.021053
Ahluwalia, B. S., McCourt, P., Huser, T., and Helleso, O. G. (2010). Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express 20, 21053-21061.
Ahluwalia, B.S., et al., 2010. Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express, 20(18), p 21053-21061.
B.S. Ahluwalia, et al., “Optical trapping and propulsion of red blood cells on waveguide surfaces”, Opt. Express, vol. 20, 2010, pp. 21053-21061.
Ahluwalia, B.S., McCourt, P., Huser, T., Helleso, O.G.: Optical trapping and propulsion of red blood cells on waveguide surfaces. Opt. Express. 20, 21053-21061 (2010).
Ahluwalia, B.S., McCourt, P., Huser, Thomas, and Helleso, O.G. “Optical trapping and propulsion of red blood cells on waveguide surfaces”. Opt. Express 20.18 (2010): 21053-21061.

16 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Quantitative phase microscopy of red blood cells during planar trapping and propulsion.
Ahmad A, Dubey V, Singh VR, Tinguely JC, Øie CI, Wolfson DL, Mehta DS, So PTC, Ahluwalia BS., Lab Chip 18(19), 2018
PMID: 30132501
Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles.
Conteduca D, Dell'Olio F, Krauss TF, Ciminelli C., Appl Spectrosc 71(3), 2017
PMID: 28287314
Recent advances in optical fiber devices for microfluidics integration.
Blue R, Uttamchandani D., J Biophotonics 9(1-2), 2016
PMID: 27115035
Metal-insulator-metal waveguides for particle trapping and separation.
Khan SA, Chang CM, Zaidi Z, Shin W, Shi Y, Ellerbee Bowden AK, Solgaard O., Lab Chip 16(12), 2016
PMID: 27216706
Review of methods to probe single cell metabolism and bioenergetics.
Vasdekis AE, Stephanopoulos G., Metab Eng 27(), 2015
PMID: 25448400
Squeezing red blood cells on an optical waveguide to monitor cell deformability during blood storage.
Ahluwalia BS, McCourt P, Oteiza A, Wilkinson JS, Huser TR, Hellesø OG., Analyst 140(1), 2015
PMID: 25408950
Long-distance laser propulsion and deformation- monitoring of cells in optofluidic photonic crystal fiber.
Unterkofler S, Garbos MK, Euser TG, St J Russell P., J Biophotonics 6(9), 2013
PMID: 23281270
Serial Raman spectroscopy of particles trapped on a waveguide.
Løvhaugen P, Ahluwalia BS, Huser TR, Hellesø OG., Opt Express 21(3), 2013
PMID: 23481754
Surface transport and stable trapping of particles and cells by an optical waveguide loop.
Hellesø OG, Løvhaugen P, Subramanian AZ, Wilkinson JS, Ahluwalia BS., Lab Chip 12(18), 2012
PMID: 22814473
All-optically-controlled nanoparticle transporting and manipulating at SOI waveguide intersections.
Li H, Yu X, Wu X, Shi W, Chen M, Liu L, Xu L., Opt Express 20(22), 2012
PMID: 23187179
Waveguide trapping of hollow glass spheres.
Ahluwalia BS, Løvhaugen P, Hellesø OG., Opt Lett 36(17), 2011
PMID: 21886206

34 References

Daten bereitgestellt von Europe PubMed Central.

Optical trapping and manipulation of single cells using infrared laser beams.
Ashkin A, Dziedzic JM, Yamane T., Nature 330(6150), 1987
PMID: 3320757
Optical trapping and manipulation of neutral particles using lasers.
Ashkin A., Proc. Natl. Acad. Sci. U.S.A. 94(10), 1997
PMID: 9144154
A revolution in optical manipulation.
Grier DG., Nature 424(6950), 2003
PMID: 12917694

Jess, J. Raman Spectrosc 38(), 2007
A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells.
Ramser K, Enger J, Goksor M, Hanstorp D, Logg K, Kall M., Lab Chip 5(4), 2005
PMID: 15791341
Cells on chips.
El-Ali J, Sorger PK, Jensen KF., Nature 442(7101), 2006
PMID: 16871208
Optical trapping, manipulation, and sorting of cells and colloids in microfluidic systems with diode laser bars.
Applegate R Jr, Squier J, Vestad T, Oakey J, Marr D., Opt Express 12(19), 2004
PMID: 19483988

Grujic, Opt. Commun. 239(), 2004
Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides.
Yang AH, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D., Nature 457(7225), 2009
PMID: 19122638
Optofluidic trapping and transport on solid core waveguides within a microfluidic device.
Schmidt BS, Yang AH, Erickson D, Lipson M., Opt Express 15(22), 2007
PMID: 19550709
Optical manipulation of microparticles and cells on silicon nitride waveguides.
Gaugiran S, Getin S, Fedeli J, Colas G, Fuchs A, Chatelain F, Derouard J., Opt Express 13(18), 2005
PMID: 19498716

Néel, Appl. Phys. Lett. 94(), 2009

Ahluwalia, IEEE Photon. Technol. Lett. 21(), 2009

Ahluwalia, Proc. SPIE 7613(), 2010

Jaising, Opt. Rev. 12(), 2005

Jaising, Opt. Commun. 246(), 2005

Néel, Appl. Phys. Lett. 94(), 2009
Cell adhesion force microscopy.
Sagvolden G, Giaever I, Pettersen EO, Feder J., Proc. Natl. Acad. Sci. U.S.A. 96(2), 1999
PMID: 9892657
Direct measurement of cell detachment force on single cells using a new electromechanical method.
Francis GW, Fisher LR, Gamble RA, Gingell D., J. Cell. Sci. 87 ( Pt 4)(), 1987
PMID: 3654789
Improved measurements of the erythrocyte geometry.
Evans E, Fung YC., Microvasc. Res. 4(4), 1972
PMID: 4635577
A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers.
Henon S, Lenormand G, Richert A, Gallet F., Biophys. J. 76(2), 1999
PMID: 9916046

Dao, J. Mech. Phys. Solids 51(), 2003
Euler buckling-induced folding and rotation of red blood cells in an optical trap.
Ghosh A, Sinha S, Dharmadhikari JA, Roy S, Dharmadhikari AK, Samuel J, Sharma S, Mathur D., Phys Biol 3(1), 2006
PMID: 16582471
Analysis of the behaviour of erythrocytes in an optical trapping system.
Grover S, Gauthier R, Skirtach A., Opt Express 7(13), 2000
PMID: 19407904
Developing optofluidic technology through the fusion of microfluidics and optics.
Psaltis D, Quake SR, Yang C., Nature 442(7101), 2006
PMID: 16871205
Transport and fractionation in periodic potential-energy landscapes.
Pelton M, Ladavac K, Grier DG., Phys Rev E Stat Nonlin Soft Matter Phys 70(3 Pt 1), 2004
PMID: 15524507
Sorting mesoscopic objects with periodic potential landscapes: optical fractionation.
Ladavac K, Kasza K, Grier DG., Phys Rev E Stat Nonlin Soft Matter Phys 70(1 Pt 1), 2004
PMID: 15324034
Raman study of mechanically induced oxygenation state transition of red blood cells using optical tweezers.
Rao S, Balint S, Cossins B, Guallar V, Petrov D., Biophys. J. 96(1), 2009
PMID: 18931252
Serum is a rich source of ligands for the scavenger receptor of hepatic sinusoidal endothelial cells.
Hansen B, Melkko J, Smedsrod B., Mol. Cell. Biochem. 229(1-2), 2002
PMID: 11936848
Sorting of polystyrene microspheres using a Y-branched optical waveguide.
Grujic K, Helleso O, Hole J, Wilkinson J., Opt Express 13(1), 2005
PMID: 19488319

Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®

Quellen

PMID: 20941001
PubMed | Europe PMC

Suchen in

Google Scholar