Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy

Gao T, Blanchette C, He W, Bourguet F, Ly S, Katzen F, Kudlicki W, Henderson P, Laurence T, Huser T, Coleman MA (2011)
Protein Science 20(2): 437-447.

Zeitschriftenaufsatz | Veröffentlicht | Englisch
 
Download
Es wurden keine Dateien hochgeladen. Nur Publikationsnachweis!
Autor*in
Gao, T.; Blanchette, C.; He, W.; Bourguet, F.; Ly, S.; Katzen, F.; Kudlicki, W.; Henderson, P.; Laurence, T.; Huser, ThomasUniBi ; Coleman, M.A.
Erscheinungsjahr
2011
Zeitschriftentitel
Protein Science
Band
20
Ausgabe
2
Seite(n)
437-447
ISSN
0961-8368
Page URI
https://pub.uni-bielefeld.de/record/2352404

Zitieren

Gao T, Blanchette C, He W, et al. Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science. 2011;20(2):437-447.
Gao, T., Blanchette, C., He, W., Bourguet, F., Ly, S., Katzen, F., Kudlicki, W., et al. (2011). Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science, 20(2), 437-447. https://doi.org/10.1002/pro.577
Gao, T., Blanchette, C., He, W., Bourguet, F., Ly, S., Katzen, F., Kudlicki, W., et al. 2011. “Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy”. Protein Science 20 (2): 437-447.
Gao, T., Blanchette, C., He, W., Bourguet, F., Ly, S., Katzen, F., Kudlicki, W., Henderson, P., Laurence, T., Huser, T., et al. (2011). Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science 20, 437-447.
Gao, T., et al., 2011. Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science, 20(2), p 437-447.
T. Gao, et al., “Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy”, Protein Science, vol. 20, 2011, pp. 437-447.
Gao, T., Blanchette, C., He, W., Bourguet, F., Ly, S., Katzen, F., Kudlicki, W., Henderson, P., Laurence, T., Huser, T., Coleman, M.A.: Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy. Protein Science. 20, 437-447 (2011).
Gao, T., Blanchette, C., He, W., Bourguet, F., Ly, S., Katzen, F., Kudlicki, W., Henderson, P., Laurence, T., Huser, Thomas, and Coleman, M.A. “Characterizing diffusion dynamics of a membrane protein associated with nanolipoproteins using fluorescence correlation spectroscopy”. Protein Science 20.2 (2011): 437-447.

12 Zitationen in Europe PMC

Daten bereitgestellt von Europe PubMed Central.

Small-angle X-ray and neutron scattering demonstrates that cell-free expression produces properly formed disc-shaped nanolipoprotein particles.
Cleveland TE, He W, Evans AC, Fischer NO, Lau EY, Coleman MA, Butler P., Protein Sci 27(3), 2018
PMID: 29266475
Recent advances in nanodisc technology for membrane protein studies (2012-2017).
Rouck JE, Krapf JE, Roy J, Huff HC, Das A., FEBS Lett 591(14), 2017
PMID: 28581067
Cell-free production of a functional oligomeric form of a Chlamydia major outer-membrane protein (MOMP) for vaccine development.
He W, Felderman M, Evans AC, Geng J, Homan D, Bourguet F, Fischer NO, Li Y, Lam KS, Noy A, Xing L, Cheng RH, Rasley A, Blanchette CD, Kamrud K, Wang N, Gouvis H, Peterson TC, Hubby B, Coleman MA., J Biol Chem 292(36), 2017
PMID: 28739800
Expression and Association of the Yersinia pestis Translocon Proteins, YopB and YopD, Are Facilitated by Nanolipoprotein Particles.
Coleman MA, Cappuccio JA, Blanchette CD, Gao T, Arroyo ES, Hinz AK, Bourguet FA, Segelke B, Hoeprich PD, Huser T, Laurence TA, Motin VL, Chromy BA., PLoS One 11(3), 2016
PMID: 27015536
Cell-free expression of functional receptor tyrosine kinases.
He W, Scharadin TM, Saldana M, Gellner C, Hoang-Phou S, Takanishi C, Hura GL, Tainer JA, Carraway KL, Henderson PT, Coleman MA., Sci Rep 5(), 2015
PMID: 26274523
Quantifying interactions of a membrane protein embedded in a lipid nanodisc using fluorescence correlation spectroscopy.
Ly S, Bourguet F, Fischer NO, Lau EY, Coleman MA, Laurence TA., Biophys J 106(2), 2014
PMID: 24461026
Evaluation of nanolipoprotein particles (NLPs) as an in vivo delivery platform.
Fischer NO, Weilhammer DR, Dunkle A, Thomas C, Hwang M, Corzett M, Lychak C, Mayer W, Urbin S, Collette N, Chiun Chang J, Loots GG, Rasley A, Blanchette CD., PLoS One 9(3), 2014
PMID: 24675794
Binding of apolipoprotein E inhibits the oligomer growth of amyloid-β peptide in solution as determined by fluorescence cross-correlation spectroscopy.
Ly S, Altman R, Petrlova J, Lin Y, Hilt S, Huser T, Laurence TA, Voss JC., J Biol Chem 288(17), 2013
PMID: 23430745
Characterization of de novo synthesized GPCRs supported in nanolipoprotein discs.
Gao T, Petrlova J, He W, Huser T, Kudlick W, Voss J, Coleman MA., PLoS One 7(9), 2012
PMID: 23028674
Stoichiometry of reconstituted high-density lipoproteins in the hydrated state determined by photon antibunching.
Ly S, Petrlova J, Huser T, Fore S, Gao T, Voss J, Laurence TA., Biophys J 101(4), 2011
PMID: 21843489

54 References

Daten bereitgestellt von Europe PubMed Central.

Detergent-mediated reconstitution of a glycosyl-phosphatidylinositol-protein into liposomes.
Angrand M, Briolay A, Ronzon F, Roux B., Eur. J. Biochem. 250(1), 1997
PMID: 9432006
Membrane protein-surfactant complexes
Gohon Y, Popot JL., 2003
Functional reconstitution of the HIV receptors CCR5 and CD4 in liposomes.
Devesa F, Chams V, Dinadayala P, Stella A, Ragas A, Auboiroux H, Stegmann T, Poquet Y., Eur. J. Biochem. 269(21), 2002
PMID: 12392548
Reconstitution of a Purified Mu-Opioid Binding-Protein in Liposomes - Selective, High-Affinity, Gtp-Gamma-S-Sensitive Mu-Opioid Agonist Binding Is Restored
Gioannini TL, Fan LQ, Hyde L, Ofri D, Yao YH, Hiller JM, Simon E., 1993
Preparation of liposomes using an improved supercritical reverse phase evaporation method.
Otake K, Shimomura T, Goto T, Imura T, Furuya T, Yoda S, Takebayashi Y, Sakai H, Abe M., Langmuir 22(6), 2006
PMID: 16519453
Incorporation into nanobilayer structures and control of the oligomerization state of the 7-TM protein bacteriorhodopsin
Bayburt TH, Grinkova LV, Denisov IG, Sligar SG., 2004
Assembly of single bacteriorhodopsin trimers in bilayer nanodiscs.
Bayburt TH, Grinkova YV, Sligar SG., Arch. Biochem. Biophys. 450(2), 2006
PMID: 16620766
Reconstitution of receptors and G proteins in phospholipid vesicles.
Cerione RA, Ross EM., Meth. Enzymol. 195(), 1991
PMID: 1851932
Direct solubilization of heterologously expressed membrane proteins by incorporation into nanoscale lipid bilayers.
Civjan NR, Bayburt TH, Schuler MA, Sligar SG., BioTechniques 35(3), 2003
PMID: 14513561
The structure of apolipoprotein A-I in high density lipoproteins.
Davidson WS, Thompson TB., J. Biol. Chem. 282(31), 2007
PMID: 17526499
Apolipoprotein A-I assumes a "looped belt" conformation on reconstituted high density lipoprotein.
Martin DD, Budamagunta MS, Ryan RO, Voss JC, Oda MN., J. Biol. Chem. 281(29), 2006
PMID: 16698792
Molecular dynamics simulations of discoidal bilayers assembled from truncated human lipoproteins.
Shih AY, Denisov IG, Phillips JC, Sligar SG, Schulten K., Biophys. J. 88(1), 2004
PMID: 15533924
Phospholipid phase transitions in homogeneous nanometer scale bilayer discs.
Shaw AW, McLean MA, Sligar SG., FEBS Lett. 556(1-3), 2004
PMID: 14706860
Transducin activation by nanoscale lipid bilayers containing one and two rhodopsins.
Bayburt TH, Leitz AJ, Xie G, Oprian DD, Sligar SG., J. Biol. Chem. 282(20), 2007
PMID: 17395586
Cell-free co-expression of functional membrane proteins and apolipoprotein, forming soluble nanolipoprotein particles.
Cappuccio JA, Blanchette CD, Sulchek TA, Arroyo ES, Kralj JM, Hinz AK, Kuhn EA, Chromy BA, Segelke BW, Rothschild KJ, Fletcher JE, Katzen F, Peterson TC, Kudlicki WA, Bench G, Hoeprich PD, Coleman MA., Mol. Cell Proteomics 7(11), 2008
PMID: 18603642
Functional reconstitution of Beta2-adrenergic receptors utilizing self-assembling Nanodisc technology.
Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG., BioTechniques 40(5), 2006
PMID: 16708760
A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein.
Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK., Proc. Natl. Acad. Sci. U.S.A. 104(18), 2007
PMID: 17452637
Insertion of membrane proteins into discoidal membranes using a cell-free protein expression approach.
Katzen F, Fletcher JE, Yang JP, Kang D, Peterson TC, Cappuccio JA, Blanchette CD, Sulchek T, Chromy BA, Hoeprich PD, Coleman MA, Kudlicki W., J. Proteome Res. 7(8), 2008
PMID: 18557639
The past, present and future of cell-free protein synthesis.
Katzen F, Chang G, Kudlicki W., Trends Biotechnol. 23(3), 2005
PMID: 15734558
Thermotropic phase transition in soluble nanoscale lipid bilayers.
Denisov IG, McLean MA, Shaw AW, Grinkova YV, Sligar SG., J Phys Chem B 109(32), 2005
PMID: 16852976
Different apolipoproteins impact nanolipoprotein particle formation.
Chromy BA, Arroyo E, Blanchette CD, Bench G, Benner H, Cappuccio JA, Coleman MA, Henderson PT, Hinz AK, Kuhn EA, Pesavento JB, Segelke BW, Sulchek TA, Tarasow T, Walsworth VL, Hoeprich PD., J. Am. Chem. Soc. 129(46), 2007
PMID: 17963384
Small-angle X-ray scattering study of monodisperse lipid-protein nanodiscs as nanoscale fragments of biological membrane
Denisov IG, Grinkova YV, Lazarides AA, Sligar SG., 2004
Self-assembly of discoidal phospholipid bilayer nanoparticles with membrane scaffold proteins
Bayburt TH, Grinkova YV, Sligar SG., 2002
Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size.
Denisov IG, Grinkova YV, Lazarides AA, Sligar SG., J. Am. Chem. Soc. 126(11), 2004
PMID: 15025475
Structure and composition of self-assembled discoidal phospholipid bilayer nanoparticles formed with different membrane scaffold proteins
Grinkova YV, Denisov IG, Bayburt TH, Sligar SG., 2004
Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes.
Silva RA, Huang R, Morris J, Fang J, Gracheva EO, Ren G, Kontush A, Jerome WG, Rye KA, Davidson WS., Proc. Natl. Acad. Sci. U.S.A. 105(34), 2008
PMID: 18719128
Smaller Discoidal High-Density Lipoprotein Particles Form Saddle Surfaces, but Not Planar Bilayers
Miyazaki M, Nakano M, Fukuda M, Handa T., 2009
Atomic force microscopy differentiates discrete size distributions between membrane protein containing and empty nanolipoprotein particles.
Blanchette CD, Cappuccio JA, Kuhn EA, Segelke BW, Benner WH, Chromy BA, Coleman MA, Bench G, Hoeprich PD, Sulchek TA., Biochim. Biophys. Acta 1788(3), 2008
PMID: 19109924
Quantifying size distributions of nanolipoprotein particles with single-particle analysis and molecular dynamic simulations.
Blanchette CD, Law R, Benner WH, Pesavento JB, Cappuccio JA, Walsworth V, Kuhn EA, Corzett M, Chromy BA, Segelke BW, Coleman MA, Bench G, Hoeprich PD, Sulchek TA., J. Lipid Res. 49(7), 2008
PMID: 18403317
High-throughput screening of optimal solution conditions for structural biological studies by fluorescence correlation spectroscopy.
Sugiki T, Yoshiura C, Kofuku Y, Ueda T, Shimada I, Takahashi H., Protein Sci. 18(5), 2009
PMID: 19388076
Confocal spectroscopy in microstructures.
Brinkmeier M, Dorre K, Riebeseel K, Rigler R., Biophys. Chem. 66(2-3), 1997
PMID: 17029876
Fluorescence Correlation (1974) Spectroscopy 1. Conceptual Basis and Theory
Elson EL, Magde D., 1974
Fluorescence correlation spectroscopy. II. An experimental realization.
Magde D, Elson EL, Webb WW., Biopolymers 13(1), 1974
PMID: 4818131
Fluorescence Correlation Spectroscopy 3. Uniform Translation and Laminar-Flow
Magde D, Webb WW, Elson EL., 1978
Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B.
Kask P, Piksarv P, Mets U, Pooga M, Lippmaa E., Eur. Biophys. J. 14(4), 1987
PMID: 3106023
Ultrasensitive hybridization analysis using fluorescence correlation spectroscopy.
Kinjo M, Rigler R., Nucleic Acids Res. 23(10), 1995
PMID: 7784185
Conformational fluctuations in single DNA molecules.
Wennmalm S, Edman L, Rigler R., Proc. Natl. Acad. Sci. U.S.A. 94(20), 1997
PMID: 9380688
Fast interactions between Rh6G and dGTP in water studied by fluorescence correlation spectroscopy
Widengren J, Dapprich J, Rigler R., 1997
Rapid, solution-based characterization of optimized SERS nanoparticle substrates.
Laurence TA, Braun G, Talley C, Schwartzberg A, Moskovits M, Reich N, Huser T., J. Am. Chem. Soc. 131(1), 2009
PMID: 19063599
Fluorescence Correlation Spectroscopy of Triplet-States in Solution-a Theoretical and Experimental-Study
Widengren J, Mets U, Rigler R., 1995
Ultrasensitive Fluorescence-Based Detection of Nascent Proteins in Gels
Sadanand G, Sergey M, Jerzy O, Kenneth R., 1999
Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane.
Lukasiewicz S, Blasiak E, Faron-Gorecka A, Polit A, Tworzydlo M, Gorecki A, Wasylewski Z, Dziedzicka-Wasylewska M., Pharmacol Rep 59(4), 2007
PMID: 17901566
Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy.
Miller AE, Fischer AJ, Laurence T, Hollars CW, Saykally RJ, Lagarias JC, Huser T., Proc. Natl. Acad. Sci. U.S.A. 103(30), 2006
PMID: 16844775
Export

Markieren/ Markierung löschen
Markierte Publikationen

Open Data PUB

Web of Science

Dieser Datensatz im Web of Science®
Quellen

PMID: 21280134
PubMed | Europe PMC

Suchen in

Google Scholar